
 

 

SEMESTER-VI 

PHYSICS-DSE: CLASSICAL DYNAMICS 

Small Amplitude Oscillations 

 

 

The theory of small oscillations was developed by D’ Alembert, Joseph-Louis Lagrange and other 

scientists. The study of the effect of all possible small perturbations to a dynamical system in mechanical 

equilibrium is known as small oscillations. The theory of small oscillations is widely used in different 

branches of physics viz. in acoustics, molecular spectra, coupled electric circuits etc. 

1. Equilibrium and its types- 

Equilibrium is the condition of a system in which all the forces- internal as well as external, 

cancel out for some configuration of the system and unless the system is perturbed by an external 

agency, it stays indefinitely in that state.  

                                                                 Equilibrium may be of following types- 

a) Static Equilibrium- 

Static equilibrium is a state of zero kinetic energy that continues indefinitely. In such 

equilibrium the immediate surroundings of the system does not change with time. Example- 

an object (e.g. book) lying still on a surface (e.g. table). 

b) Dynamic Equilibrium- 

Dynamic equilibrium is defined as the state when no net force acting on the system which 

continues with zero kinetic energy. In such equilibrium the immediate surroundings of the 

system change with time such that it exerts a balancing force on the system. Example- the 

charge neutrality of atoms. 

c) Stable Equilibrium- 

In stable equilibrium, if a small displacement is given, the system tends to return to the 

original equilibrium state. Example- the bob of a simple pendulum in equilibrium state. 

d) Unstable Equilibrium- 

In instable equilibrium, if a small displacement is given, the system does not return to the 

original equilibrium state. Example- a large sized stone lying on the upper edge of a cliff. 

e) Metastable Equilibrium- 

In metastable equilibrium, the system can’t return to the original equilibrium configuration, if 

displaced sufficiently; for smaller displacement, however, it can return. Example- a balloon 

that explodes above a certain gas pressure. 

2. Equilibrium state and stability of a system- 

Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion 

of the potential energy around minimum, small amplitude oscillations about the minimum, normal 

modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical 

springs. 



 

 

In a conservative system the potential V is a function of position (qi) only and the system is said 

to be equilibrium when the generalized forces Qi acting on the system vanish. 

Therefore,                              𝑄𝑖 = − (
𝜕𝑉

𝜕𝑞𝑖
)

0
= 0 ………………………… (i) 

                                                                                  i.e. the potential energy has an extremum ( 

maximum or minimum) at the equilibrium configuration of the system, 

𝑞01, 𝑞02, 𝑞03, 𝑞04, … … … … … . , 𝑞0𝑛 . When V is a minimum at equilibrium, any small deviation 

from this position means an increase in V and consequently decrease in kinetic energy T i.e., 

velocity v, in a conservative system and the body ultimately comes to rest, indicating the small 

bounded motion about the Vmin. Such equilibrium is known as the stable equilibrium. On the 

other hand, a small departure from Vmax results in decrease in V and increase in kinetic energy 

and velocity indefinitely, which corresponds to unstable motion. Thus the position of Vmax is the 

position of unstable equilibrium. Therefore oscillations always occur about a position of stable 

equilibrium i.e. about Vmin.  

                                           Let V(max) be the potential energy function for a particle and also let 

the force F acting on the particle vanishes at x0 i.e. 

                                                𝐹 = − (
𝑑𝑉

𝑑𝑥
)

𝑥0

= 0………………………….. (ii) 

In that case x0 is the point of equilibrium. To test the stability of the equilibrium we must examine 

𝑑2𝑉

𝑑𝑥2 at x0.  If the second derivative is positive, the equilibrium is stable. Thus in stable 

equilibrium, 

                                                                     

(
𝑑2𝑉

𝑑𝑥2
)𝑥0

> 0 

If the second derivative is negative, the equilibrium is unstable. Thus in unstable equilibrium, 

(
𝑑2𝑉

𝑑𝑥2
)𝑥0

< 0 

And if the second derivative also vanishes, we must examine the higher derivatives at x0. If all the 

derivatives vanish at x0, so that V(x) is constant in a region about x0, then the particle is 

effectively free. In such a situation no force results from a displacement (from x0 ) and the system 

to be in state of neutral stability. Thus in neutral equilibrium, 

(
𝑑2𝑉

𝑑𝑥2
)𝑥0

= 0 

 

 



 

 

 

3. The Stability of a Simple Pendulum (One Dimensional Oscillator)- 

Let m be the mass of the bob of a pendulum and l be its length. The zero of the potential energy 

scale is taken at the bottom of the swing. 

 
 

 If Ө be its angular deflection, then the potential energy is given by, 

                                                 𝑉(𝜃) = 𝑚𝑔𝑙(1 − 𝐶𝑜𝑠𝜃)……………………….. (i) 

                                                                                       where g is the acceleration due to gravity. 

The equilibrium position of the pendulum is given by, 

𝑑𝑉

𝑑𝜃
= 𝑚𝑔𝑙 𝑆𝑖𝑛𝜃 = 0 

𝑖. 𝑒. Ө =  𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 𝜋 

Now, we have  

                                     

𝑑2𝑉

𝑑𝜃2
= 𝑚𝑔𝑙 𝐶𝑜𝑠𝜃 

Now, (
𝑑2𝑉

𝑑𝜃2)𝜃=0 > 0, and it corresponds to the position of stable equilibrium. 

(
𝑑2𝑉

𝑑𝜃2)𝜃=𝜋 < 0, and it corresponds to the position of unstable equilibrium. 

                            Therefore  Ө=0 is the position of stable equilibrium at which the bob can hang 

for an indefinite period, which is not at all possible at the position of unstable equilibrium at 𝜃 =

𝜋. The pendulum can therefore oscillate only about the position of stable equilibrium (Ө=0). 

 

4. General Problem of Small Oscillation- 

a) Formulation of the Problem- 

In tackling the general problem of small oscillations we perform an appropriate simplification of 

Lagrangian method. We know that the oscillations whether large or small take place about a 

position of equilibrium. Thus a pendulum oscillates about a verticval which is its stable 

equilibrium position. When the pendulum is deflected from the stable position a restoring force 

acts on the pendulum in a direction opposite to the direction of deflection. In the equilibrium 

position this force is zero. 



 

 

                                         We now suppose that the force is acting on a system which is wholly 

conservative and hence it is derivable from potential. In the equilibrium condition of the system 

the generalized force Qi will be equal to zero. 

The potential energy is a function of position only i.e., the generalized co-ordinates 

q1,q2,q3,q4,………….,qn. Hence, 

 

              (
𝜕𝑉

𝜕𝑞𝑖
)

0

= 0 … … … … … … … … … . (𝑖) 

       Let us denote the deviation of the generalized co-ordinates from equilibrium by ηi. 

Therefore, 𝑞𝑖 = 𝑞0𝑖 + 𝜂𝑖  𝑜𝑟, 𝜂𝑖 = 𝑞𝑖 − 𝑞0𝑖…………………….......(ii) 

                                                    q0i denotes the equilibrium position of the co-ordinate system. 

Expanding the potential V (q1,q2,q3,q4,………….,qn ) in Taylor’s series about q0i we may write, 

                            𝑉 (𝑞1, 𝑞2, … … … . , 𝑞𝑛)

= 𝑉(𝑞01, 𝑞02, … … … . , 𝑞0𝑛) + ∑ (
𝜕𝑉

𝜕𝑞𝑖
)

0

𝑛

𝑖

𝜂𝑖 +
1

2
∑ ∑ (

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

𝜂𝑖

𝑛,𝑛

𝑖,𝑗

𝜂𝑗 + ⋯ 

                                                                                         ………………….(iii) 

The first term on the right hand side of the equation is constant and hence may be taken to be 

equal to zero and the second term vanishes due to equation (i). So the first approximation we may 

write, 

𝑉 (𝑞1, 𝑞2, … … … . , 𝑞𝑛) =
1

2
∑ ∑ (

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

𝜂𝑖

𝑛,𝑛

𝑖,𝑗

𝜂𝑗 … … … … … … … … . (𝑖𝑣) 

 

Writing Vij for (
𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

we get, 

𝑉 (𝑞1, 𝑞2, … … … . , 𝑞𝑛) =
1

2
∑ ∑ 𝑉𝑖𝑗

𝑖,𝑗

𝜂𝑖𝜂𝑗 … … … … … … … (𝑣) 

 

We shall now examine the expression for kinetic energy of the system of particles which is given 

by, 

𝑇 = ∑ ∑
1

2
𝑚𝑖𝑗�̇�𝑖�̇�𝑗

𝑖,𝑗

 

Here, 𝑚𝑖𝑗 = 𝑚𝑗𝑖, 𝑖. 𝑒. 𝑚𝑖𝑗 form a symmetric matrix. From Taylor’s series we may write, 

𝑚𝑖𝑗(𝑞1, 𝑞2, … … … . , 𝑞𝑛) = 𝑚𝑗𝑖(𝑞01, 𝑞02, … … … . , 𝑞0𝑛) + ∑(
𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
)0

𝑘

𝜂𝑘 + ⋯ 

                                                                                     …………………………(vi) 

Hence the kinetic energy becomes 

𝑇 =
1

2
{𝑚𝑖𝑗(𝑞01, 𝑞02, … … … . , 𝑞0𝑛) + ∑ (

𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
)

0𝑘

𝜂𝑘 + ⋯ }�̇�𝑖�̇�𝑗 

This equation is quadratic in �̇�𝑖’s and the lowest non-vanishing approximation to T is obtained by 

dropping all the terms on the right hand side of the above equation except the first term. 

Therefore, 



 

 

𝑇 =
1

2
∑ ∑ 𝑚𝑖𝑗(𝑞01, 𝑞02, … … … . , 𝑞0𝑛)�̇�𝑖�̇�𝑗 =

1

2
∑ ∑ 𝑇𝑖𝑗 �̇�𝑖�̇�𝑗 

                                                                                ………………………………..(vii) 

Here the constant value of mij at equilibrium is denoted by Tij. 

Hence the Lagrangian function is, 

𝐿 = 𝑇 − 𝑉 =
1

2
∑ ∑(𝑇𝑖𝑗

𝑖,𝑗

�̇�𝑖�̇�𝑗 − 𝑉𝑖𝑗𝜂𝑖𝜂𝑗) 

Thus the n-equations of motion derived from the function L is 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) − (

𝜕𝐿

𝜕𝜂𝑖
) = 0   (𝑖 = 1,2,3, … . . , 𝑛) 

                                            𝑜𝑟, ∑ 𝑇𝑖𝑗 �̈�𝑗 + ∑ 𝑉𝑖𝑗𝜂𝑗 = 0…………………..(viii) 

In the above equation both Tij and Vij have symmetric properties. 

We can write this equation in the following matrix form, 

                                                   𝑇�̈� + 𝑉𝜂 = 0……………...............……..(ix) 

where 𝑇 = (

𝑇11 𝑇12 … 𝑇1𝑛

𝑇21 𝑇22 … 𝑇2𝑛

… … … …
𝑇𝑛1 𝑇𝑛2 … 𝑇𝑛𝑛

) ; 𝑉 = (

𝑉11 𝑉12 … 𝑉1𝑛

𝑉21 𝑉22 … 𝑉2𝑛

… … … …
𝑉𝑛1 𝑉𝑛2 … 𝑉𝑛𝑛

) ; 𝜂 = (

𝜂1

𝜂2

⋮
𝜂𝑛

) 

Here T denotes the inertial coefficient matrix and V the stiffness coefficient matrix. V plays the 

role of restoring force which tends to bring the system to the position of equilibrium which may 

be called restoring tensor. 

b) Eigen Value Problem and Normalization- 

For similarity to the equation of simple harmonic oscillator, we try an oscillator solution of 

equation (viii) in the form, 

                                                𝜂𝑗 = 𝑎𝑗𝑒𝑖𝜔𝑡…………………………………….(x) 

The idea behind the above trial solution is that ω is independent of j, i.e. all the co-ordinates are 

assumed to execute SHM with same period but different amplitude (and either in-phase or out-of-

phase only, depending on the sign of aj ). aj are in general complex and only the real parts of them 

correspond to the actual motion. Putting equation (x) in equation (viii) we get, 

                                         

∑(𝑉𝑖𝑗 − 𝜔2𝑇𝑖𝑗)𝑎𝑗 = 0

𝑗

 

                                                                                                …………………..(xi) 

                                                                                                 (𝑖 = 1,2,3, … … … … … , 𝑛) 

                                                                        which is a set of n linear homogeneous equations for 

the aj’s and consequently for a non-trivial solution (i.e., not all aj =0) the determinant of the 

coefficients  must vanish i.e. ⎹𝑉𝑖𝑗 − 𝜔2𝑇𝑖𝑗⎹ = 0 

𝑜𝑟, |

𝑉11 − 𝜔2𝑇11 … … 𝑉1𝑛 − 𝜔2𝑇1𝑛

⋮ ⋮
⋮ ⋮

𝑉𝑛1 − 𝜔2𝑇𝑛1 … … 𝑉𝑛𝑛 − 𝜔2𝑇𝑛𝑛

| = 0 

                                                                                           ....................................... (xii) 

This is called the secular determinant. This determinant condition is an algebraic equation of nth 

degree for 𝜔2 and hence provides n- values of 𝜔2 for which equation (x) represents the correct 



 

 

solutions to the equations of motion. For each of these values of 𝜔2 the equation (xi) may be 

solved for the amplitudes or more precisely for (n-1) of the amplitudes in terms of the remaining 

one. This is due to the fact that the coefficient aj are determined only up to a common multiplier. 

This is apparent from equation (xi). Thus the ratios of aj’s are definite (for a particular frequency) 

but not their absolute values. This arbitrariness in the values of aj will be utilized in the 

normalization procedure. 

                                        Since there exist n values of 𝜔𝑘, we also get n- set of values of 

amplitudes. Each of these set (i.e., n- values of aj’s corresponding to a particular frequency(𝜔𝑘) 

can be considered to define the components of a n- dimensional vector �⃗�𝑘. This �⃗�𝑘 is called the 

eigen vector of the system associated with the eigen frequency𝜔𝑘. The symbol ajk may now be 

used to represent the j-th component of the k-th eigen vector. Using the principle of 

superposition, the general solution may now be written as, 

𝜂𝑗(𝑡) = ∑ 𝑎𝑗𝑘𝑒𝑖𝜔𝑘𝑡

𝑘

 

                                                                                                ....................................... (xiii) 

where motion of each ηj is compounded of motions with each of the n values of frequencies 𝜔𝑘.  

The actual motion is the real part of the complex equation (xiii) which can be expressed as, 

𝜂𝑗(𝑡) = ∑ 𝑎𝑗𝑘  𝐶𝑜𝑠(

𝑘

𝜔𝑘𝑡 + 𝜙𝑘) 

The motion is oscillatory about the stable equilibrium position only for 𝜔𝑘
2 > 0. If two or more 

values of 𝜔𝑘 happen to be the same, then the phenomenon is known as degeneracy. 

c) Orthogonality of Eigenvectors- 

Equation (xi) represents a special type of eigen value equation as, 

                                           𝑽𝒂 = 𝝀𝑻𝒂 ..........................................(xiv) with 𝜔2 = 𝜆 

                                                           where the matrix V,T and a are 

            𝑽 = (

𝑉11 𝑉12 … 𝑉1𝑛

𝑉21 𝑉22 … 𝑉2𝑛

… … … …
𝑉𝑛1 𝑉𝑛2 … 𝑉𝑛𝑛

), 𝑻 = (

𝑇11 𝑇12 … 𝑇1𝑛

𝑇21 𝑇22 … 𝑇2𝑛

… … … …
𝑇𝑛1 𝑇𝑛2 … 𝑇𝑛𝑛

), 𝒂 = (

𝑎1

𝑎2

⋮
𝑎𝑛

) 

In ordinary eigenvalue problem, 𝑽𝒂 = 𝜆𝒂 i.e. the effect of V on eigenvector a is just to generate a 

vector which is 𝜆 times a, 𝜆 being a scalar. Here, however, V acting on a, generates a multiple (𝜆) 

of the result of T acting on a. 

A typical equation for the eigenvalue 𝜆𝑘 can be written from equation (xiv) as, 

∑ 𝑉𝑖𝑗𝑎𝑗𝑘 = 𝜆𝑘 ∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑗𝑗

 

                                                                                            ......................................(xv) 

The complex conjugate of similar equation for λl gives, 

∑ 𝑉𝑖𝑗𝑎𝑖𝑙
∗ = 𝜆𝑙

∗ ∑ 𝑇𝑖𝑗

𝑗𝑗

𝑎𝑖𝑙
∗  

                                                                                           .........................................(xvi) 

                                                            (since Vij and Tij are real and also symmetric) 

Multiplying equation (xv) by 𝑎𝑖𝑙
∗  and summing over i and multiplying equation (xvi) by ajk and 

summing over j, and next subtracting the latter from the former, we get 



 

 

                                                      

                                           (𝜆𝑘 − 𝜆𝑙
∗) ∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑖𝑗

𝑎𝑖𝑙
∗ = 0 … … … … … … … (𝑥𝑣𝑖𝑖) 

𝑜𝑟, (𝜆𝑘 − 𝜆𝑘
∗ ) ∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑖𝑗

𝑎𝑖𝑘
∗ = 0 

                                                                                    ............................................(xviii) for l=k 

Now, 𝑎𝑗𝑘 = 𝛼𝑗𝑘 + 𝑖𝛽𝑗𝑘 as ajk is complex. 

and 

∑ 𝑇𝑖𝑗𝑎𝑗𝑘𝑎𝑖𝑘
∗ = ∑ 𝑇𝑖𝑗𝛼𝑗𝑘

𝑖𝑗

𝛼𝑖𝑘 + ∑ 𝑇𝑖𝑗𝛽𝑗𝑘

𝑖𝑗

𝛽𝑖𝑘 + 𝑖 ∑ 𝑇𝑖𝑗(𝛽𝑗𝑘𝛼𝑖𝑘 − 𝛼𝑗𝑘𝛽𝑖𝑘) … … … … . . (𝑥𝑖𝑥) 

                                    Tij being symmetric, the interchange of dummy indices i and j changes sign 

of the third summation on the right. Therefore, the imaginary term vanishes in equation (xix) and 

the two real sums are twice the kinetic energy when the velocities �̇�𝑖 have values 𝛼𝑖𝑘 and  𝛽𝑖𝑘 

respectively. The kinetic energy can never be zero for real velocities. Thus, the eigenvalues 𝜆𝑘 

must be real. 

                   Eigenvalues and eigenvectors being real, the equation (xvii) may be written as 

(𝜆𝑘 − 𝜆𝑙) ∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑖𝑗

𝑎𝑖𝑙 = 0 … … … … … … … … … . (𝑥𝑥) 

When the roots of the characteristic equation (xii) are all distinct, 𝜆𝑘 ≠ 𝜆𝑙, we shall get, 

∑ 𝑇𝑖𝑗𝑎𝑗𝑘 𝑎𝑖𝑙 = 0 … … … … … … … … … … … … (𝑥𝑥𝑖)(𝑓𝑜𝑟 𝑙 ≠ 𝑘) 

This shows that the eigenvectors are orthogonal. 

The eigenvalue equation (xi) can’t completely fix the values of ajk, as has already been stated. The 

uncertainty can however be removed be removed by setting, purely arbitrarily, 

∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑖𝑗

𝑎𝑖𝑘 = 1 … … … … … … … … … … … (𝑥𝑥𝑖𝑖)(𝑓𝑜𝑟 𝑙 = 𝑘) 

Each of n such equations uniquely fix the arbitrary component in each eigenvector 

(corresponding to a given eigenfrequency). Combining the equations (xxi) and (xxii), we get 

∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑖𝑗

𝑎𝑖𝑘 = 𝛿𝑙𝑘 

                                                               𝑖. 𝑒. �̃�𝑻𝒂 = 𝑰................................(xxiii) 

                                                                                   where �̃� being the transpose of a. 

Introducing a diagonal matrix λ with elements 𝜆𝑙𝑘 = 𝜆𝑘𝛿𝑙𝑘, the eigenvalue equation (xv) becomes 

∑ 𝑉𝑖𝑗𝑎𝑗𝑘 = 𝜆𝑘 ∑ 𝑇𝑖𝑗𝑎𝑗𝑘

𝑗𝑗

= ∑ 𝑇𝑖𝑗

𝑗𝑖

𝑎𝑗𝑙𝜆𝑙𝑘 

𝑖. 𝑒. 𝑽𝒂 = 𝑻𝒂𝜆 … … … … … … … . . (𝑥𝑥𝑖𝑣) 

Therefore,                              �̃�𝑽𝒂 = �̃�𝑻𝒂𝜆 = 𝜆..........................(xxv) 

This shows that the matrix a diagonalises both T and V simultaneously. 

d) Normal co-ordinates- 

The normalization of ajk leaves no ambiguity in the solution for 𝜂𝑗. To remove the loss of 

generality due to the introduction of arbitrary normalization, a scalar factor βk may be used when 

the equation (xiii) becomes 



 

 

𝜂𝑗(𝑡) = ∑ 𝑎𝑗𝑘𝛽𝑘𝑒𝑖𝜔𝑘𝑡 = ∑ 𝑎𝑗𝑘𝑄𝑘 … … … … … … … … (𝑥𝑥𝑣𝑖)

𝑘𝑘

 

                                                       where 𝑄𝑘 = 𝛽𝑘𝑒𝑖𝜔𝑘𝑡............................(xxvii) 

                              Therefore, �̃� = �̃��̃�..........................(xxviii) 

Equation (xxvii) shows that Qk oscillates with one frequency only, called normal frequency, 

namely 𝜔𝑘. These Qk’s are called the normal co-ordinates of the system. The normal co-ordinates 

are thus defined as the generalized co-ordinates where each one of them executes oscillations 

with a single frequency. If expressed in terms of normal co-ordinates, potential energy and kinetic 

energy take rather simple forms as given below, 

𝑃. 𝐸. = 𝑉 =
1

2
∑ 𝜂𝑖𝑉𝑖𝑗𝜂𝑗 =

1

2
𝑖𝑗

�̃�𝑽𝜼 =
1

2
�̃��̃�𝑽𝒂𝑄 =

1

2
�̃�𝜆𝑄 

                                       =
1

2
∑ 𝑄𝑙𝜆𝑙𝑘𝑄𝑘

𝑙𝑘

=
1

2
∑ 𝑄𝑙𝜆𝑘𝛿𝑙𝑘𝑄𝑘 =

𝑙𝑘

1

2
∑ 𝜔𝑘

2𝑄𝑘
2

𝑘

… … … … . . (𝑥𝑥𝑖𝑥) 

                                                                  (using equations (xxviii) and (xxv)) 

𝐾. 𝐸 = 𝑇 =
1

2
∑ �̇�𝑖𝑇𝑖𝑗

𝑖𝑗

�̇�𝑗 =
1

2
�̃̇�𝑇�̇� =

1

2
�̃̇��̃�𝑻𝒂�̇� =

1

2
�̃̇��̇� =

1

2
∑ �̇�𝑘

2 … … … … … … . (𝑥𝑥𝑥)

𝑘

 

So, the new Lagrangian is, 

  

𝐿 = 𝑇 − 𝑉 =
1

2
∑(�̇�𝑘

2 −

𝑘

𝜔𝑘
2𝑄𝑘

2) … … … … … … … … . . (𝑥𝑥𝑥𝑖) 

                      Therefore, the Lagrange’s equation of motion are given by, 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑘

) −
𝜕𝐿

𝜕𝑄
= 0 

                         𝑜𝑟, �̈�𝑘 + 𝜔𝑘
2𝑄𝑘 = 0 … … … … … … … … … … … (𝑥𝑥𝑥𝑖𝑖) (k=1,2,3......) 

                        This is the set of n-independent equations of SHM with single normal frequency 𝜔𝑘. 

                         The solution of the equation (xxxii) is given by, 

𝑄𝑘 = 𝑎𝑘𝐶𝑜𝑠(𝜔𝑘𝑡) + 𝑏𝑘𝑆𝑖𝑛(𝜔𝑘𝑡), 𝑤ℎ𝑒𝑛 𝜔𝑘
2 > 0 

𝑄𝑘 = 𝑎𝑘𝑡 + 𝑏𝑘𝑡, 𝑤ℎ𝑒𝑛 𝜔𝑘
2 = 0 

𝑄𝑘 = 𝑎𝑘𝑒𝜔𝑘𝑡 + 𝑏𝑘𝑒−𝜔𝑘𝑡, 𝑤ℎ𝑒𝑛 𝜔𝑘
2 < 0 

                       For 𝜔𝑘
2 > 0, the co-ordinates always remain finite. Such solutions refer to stable  

                     equilibrium. For 𝜔𝑘
2 = 0 and 𝜔𝑘

2 < 0, the co-ordinates become infinite as time advances and                                        

                     such solutions refer to unstable equilibrium. 

e) Normal co-ordinates Qk in terms of co-ordinates ηj 

The complex quantity βk may be written as, 



 

 

                                      𝛽𝑘 = 𝜇𝑘 + 𝑖𝜈𝑘.................................................(xxxiii) 

Therefore, equation (x) becomes, 

                                      

𝜂𝑗(𝑡) = ∑ 𝑎𝑗𝑘(

𝑘

𝜇𝑘 + 𝑖𝜈𝑘)𝑒𝑖𝜔𝑘𝑡 

                                                                                         ............................(xxxiv) 

On differentiating with respect to time we get, 

                    𝜂̇ 𝑗(𝑡) = ∑ 𝑖𝜔𝑘𝑎𝑗𝑘(

𝑘

𝜇𝑘 + 𝑖𝜈𝑘)𝑒𝑖𝜔𝑘𝑡 

                  ................................................(xxxv) 

The real part of equation (xxxiv) gives at t=0, 

𝜂𝑗(0) = ∑ 𝑎𝑗𝑘

𝑘

𝜇𝑘 

                    ............................................(xxxvi) 

Multiplying throughout by Tjiair and summing over ij, and using equation (xxxvi), we get, 

∑ 𝜂𝑗(0)𝑇𝑗𝑖𝑎𝑖𝑟 = ∑ 𝜇𝑘

𝑘

∑ 𝑎𝑗𝑘

𝑖𝑗𝑖𝑗

𝑇𝑗𝑖𝑎𝑖𝑟 = ∑ 𝜇𝑘𝛿𝑘𝑟 = 𝜇𝑟

𝑘

 

                                                                                                 ..........................(xxxvii) 

Similarly, the real part of equation (xxxv) at t=0 gives, 

�̇�𝑗(0) = − ∑ 𝜔𝑘

𝑘

𝜈𝑘𝑎𝑗𝑘 

                                                                                         ...................................(xxxviii) 

Multiplying both sides by Tjiair  and summing over ij, and using equation(xxxvi), we get, 

∑ �̇�𝑗(0)𝑇𝑗𝑖𝑎𝑖𝑟 = − ∑ 𝜔𝑘𝜈𝑘

𝑘

∑ 𝑎𝑗𝑘

𝑖𝑗𝑖𝑗

𝑇𝑗𝑖𝑎𝑖𝑟 = − ∑ 𝜔𝑘𝜈𝑘𝛿𝑘𝑟 = −𝜔𝑟

𝑘

𝜈𝑟 

                                                                                              .......................(xxxix) 

Thus, the normal co-ordinates Qr may be expressed as the real part of the expression in, 

𝑄𝑟(𝑡) = 𝛽𝑟𝑒𝑖𝜔𝑟𝑡 = (𝜇𝑟 + 𝑖𝜈𝑟)𝑒𝑖𝜔𝑟𝑡 = ∑ 𝑇𝑗𝑖𝑎𝑖𝑟[

𝑖𝑗

𝜂𝑗(0) −
𝑖

𝜔𝑟
�̇�𝑗(0)]𝑒𝑖𝜔𝑟𝑡 

Therefore, for any arbitrary 𝜂𝑗(0) and �̇�𝑗(0), a set of normal co-ordinates Qr may be found, each 

of which varies harmonically with single frequency 𝜔𝑟. 

f) Energy in normal co-ordinates 

Here, 

𝑉 =
1

2
∑ 𝜔𝑘

2𝑄𝑘
2

𝑘    and  𝑇 =
1

2
∑ �̇�𝑘

2
𝑘  

So, total mechanical energy E, in normal co-ordinates, is given by, 

𝐸 = 𝑇 + 𝑉 =
1

2
∑(�̇�𝑘

2 + 𝜔𝑘
2𝑄𝑘

2)

𝑘

 

This is true for small oscillations with any number n of degrees of freedom. 

Examples- 



 

 

1. The potential energy V(x) of a particle is given by, 

𝑉(𝑥) = 3𝑥4 − 8𝑥3 − 6𝑥2 + 24𝑥 

Determine the points of stable and unstable equilibrium. 

Solution- 

For the points of equilibrium(𝑑𝑉/𝑑𝑥) = 0. Since, we have 

𝑉(𝑥) = 3𝑥4 − 8𝑥3 − 6𝑥2 + 24𝑥 

So, 
𝑑𝑉

𝑑𝑥
= 12𝑥3 − 24𝑥2 − 12𝑥 + 24 

At the points of equilibrium, therefore, 12𝑥3 − 24𝑥2 − 12𝑥 + 24 = 0 

𝑜𝑟, 𝑥3 − 2𝑥2 − 𝑥 + 2 = 0 

𝑜𝑟, (𝑥 + 1)(𝑥 − 1)(𝑥 − 2) = 0 

Therefore, the points of equilibrium are 

x= -1,1 and 2. 

To test the stability of equilibrium at those points, we find 
𝑑2𝑉

𝑑𝑥2 at the points and if it is positive, the 

equilibrium is stable; if negative, it is unstable. 

Now, 
𝑑2𝑉

𝑑𝑥2 = 36𝑥2 − 48𝑥 − 12 

So, (
𝑑2𝑉

𝑑𝑥2)
𝑥=−1

= 72 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

(
𝑑2𝑉

𝑑𝑥2)
𝑥=1

= −24 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

(
𝑑2𝑉

𝑑𝑥2)
𝑥=2

= 36 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

Therefore, equilibrium are stable at x = -1 and x = 2; unstable at x = 1. 

2. Consider two identical simple harmonic oscillators coupled together. Their K.E. and P.E. are 

given by 𝑇 =
1

2
𝑚(�̇�1

2 + �̇�2
2) and 𝑉 =

1

2
𝑘(𝑞1

2 + 𝑞2
2) − ℎ𝑞1𝑞2 

(i) Find the Hamiltonian of the system. 

(ii) Fine the frequencies for normal modes and the ratio of the amplitudes of each of the 

coordinates q1 and q2 in those modes. 

(iii) Introduce the normal coordinates and thereby set up the corresponding Lagrange’s 

equation. 

Solution- 

(i) Here, V is independent of the velocity, so it represents a conservative system. 

Thus the Hamiltonian is given by, 

𝐻 = 𝑇 + 𝑉 =
1

2
𝑚(�̇�1

2 + �̇�2
2) +

1

2
𝑘(𝑞1

2 + 𝑞2
2) − ℎ𝑞1𝑞2  

(ii) Here, Lagrangian is 

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚(�̇�1

2 + �̇�2
2) −

1

2
𝑘(𝑞1

2 + 𝑞2
2) + ℎ𝑞1𝑞2....................(i) 

Now, we get, 

𝜕𝐿

𝜕�̇�1
= 𝑚�̇�1 

−
𝜕𝐿

𝜕𝑞1
= 𝑘𝑞1 − ℎ𝑞2 



 

 

𝜕𝐿

𝜕�̇�2
= 𝑚�̇�2 

 

−
𝜕𝐿

𝜕𝑞2
= 𝑘𝑞2 − ℎ𝑞1 

                                             Putting these values in equation (i) we get, 

                                              𝑚�̈�1 + 𝑘𝑞1 − ℎ𝑞2 = 0...................(ii) 

                                              𝑚�̈�2 + 𝑘𝑞1 − ℎ𝑞2 = 0...................(iii) 

                                    Let 𝑞1 = 𝐴1𝑒𝑖𝜔𝑡 . Putting this value in equation (ii) we get, 

𝐴1(𝑘 − 𝜔2𝑚) − 𝐴2ℎ = 0 

                                    Again, let 𝑞2 = 𝐴2𝑒𝑖𝜔𝑡. Putting this value in equation (iii) we get, 

−𝐴1ℎ + 𝐴2(𝑘 − 𝜔2𝑚) = 0 

                                    For non-zero solution, we must have the determinant, 

|𝑘 − 𝜔2𝑚 −ℎ
−ℎ 𝑘 − 𝜔2𝑚

| = 0 

𝑜𝑟, (𝑘 − 𝜔2𝑚)2 − ℎ2 = 0 

𝑜𝑟, 𝑘 − 𝜔2𝑚 = ±ℎ 

                                    Therefore, 𝜔2 = (𝑘 ∓ ℎ) 

                                    So, 𝜔1 = √
(𝑘−ℎ)

𝑚
, 𝜔2 = √

(𝑘+ℎ)

𝑚
 

                                    Now, 
𝐴2

𝐴1
=

(𝑘−𝜔1
2𝑚)

ℎ
 𝑜𝑟,

(𝑘−𝜔2
2𝑚)

ℎ
  

(iii) Let the normal coordinates are 𝑄𝑖 = 𝐴𝑖𝑒𝑖𝜔𝑖𝑡 

Differentiating with respect to t we get, 

�̈�𝑖 + 𝜔𝑖
2𝑄𝑖 = 0, 𝑖 = 1,2. 

Thus Lagrange’s equation is, 

𝐿𝑖 =
1

2
�̇�𝑖

2 −
1

2
𝜔𝑖𝑄𝑖

2 

Exercise- 

1. The potential energy of a particle is given by  

𝑉(𝑥) = 𝑥4 − 4𝑥3 − 8𝑥2 + 48𝑥 

Find the points of stable and unstable equilibrium. (KNU-2019) 

2. Discuss the general theory of small oscillation of a system to obtain the equation of motion near 

its equilibrium position. How the eigen frequencies of the system can be obtained for such a 

system. (KNU-2019) 

3. What is normal mode and normal frequency? (KNU-2019) 

4. Discuss the stability of a simple pendulum and show that it can oscillate only about the position 

of its stable equilibrium. 

5. Establish the relation  

                                                   𝑇�̈� + 𝑉𝜂 = 0,for small oscillations of a system, the symbols 

having their usual meanings. 

6. A particle moves in potential energy given by 



 

 

𝑉(𝑥) = 𝑏𝑥2 +
𝑎

𝑥2, a,b>0. Show that its frequency of oscillation is √
8𝑏

𝑚
. 

7. What is meant by equilibrium, stable and unstable equilibrium? Show that oscillations can occur 

only about a stable equilibrium. 

8. Write down the differences between stable and unstable equilibrium. 
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