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                                                                                                              Lecture -1 

 

Section 1 :    Introduction                                                       .                  
                                 
               Suppose that for each positive integer n , we can find , by some determinable 

manner , a well-defined real number �� . Then the collection { �� , �� , �� ,… ��, … . }  

,denoted also by {��} , is called a sequence of real numbers . More precisely we can define 

sequence as follows : 

 

Definition :   

                        A sequence of real numbers is a function from the set N of natural numbers 

to the set R of real numbers i.e. �: � →  � . If  f(n) = �� , then the sequence generated by f is 

denoted by {f(1) ,f(2) , f(3),…….} or { f(n)} or {��} . f(n) is the n-th term of the sequence . 

Here we use the sequence to mean ‘real sequence’. 

 

Remark :   

 

 (a) It is to be born in mind that a sequence {��} is different from the set {�� ∶ � � �} . For 

instance , a number may be repeated in a sequence {��} ,but it need not to be written 

repeatedly in the set . For example { 1,-1 ,1 ,-1 ,1 ,……….} is a sequence {��} where 

�� = (−1)� where � � � , but where as the set {�� ∶ � � �} is same as {1 , −1} . 

 

(b) Instead of sequence of real numbers, we can also talk about a sequence of elements from 

any nonempty set S, such as sequence of sets, sequence of functions and so on. Thus, given a 

nonempty set S, a sequence in S is a function : � →  � . For example ,for each � � � consider 

the set �� = {� � � ∶ � ≤ �} . Then we obtain a sequence of subsets of N , namely 

{ ��, ��, ��, … . . . } . 

(c) The range of a sequence {��} is a subset of R , denoted by the symbol {�� ∶ � � �} . 

 

 

Examples :   (1) Let   : � →  � be defined by f(n) = �� , � � ! . Then sequence is {��} . It is 

also denoted by {1�, 2� , 3 �, 4�, … … . }. Range of the sequence is also 

{1�, 2� , 3 �, 4�, … … . }. 

 

(2)  Let   : � →  � be defined by  f(n) = (−1)� , � � ! . The sequence is {(−1)�} .It is also 

denoted by {1, −1, 1, −1, … … . . } .The range of the sequence is {1, −1} . 

 

(3) Let   : � →  � be defined by  f(n) = 2 , � � ! . The sequence is {2,2,2,2, … … . . } .It is 

called constant sequence . Range of the sequence is {2} . 

 

(4) The celebrated Finonacci sequence {��} is given by the inductive definition  

        

                  �� = 1 ,             �� = 2 ,              �� = �(�%�) + �(�%�) , � ≥ 3         

 

    Thus each term is the sum of its two immediate predecessors. The sequence may be written      

    as {1, 1, 2, 3, 5, 8, 13, 21 , … … … … } .  
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Geometrical Representation :  

                                                     Each term of the sequence  {��} of real numbers 

corresponds to a point on the real axis. We then call the collection of such points a sequence 

of points on the real line. 

On the plane determined by two mutually perpendicular lines OX and OY , we may plot the 

points (n , ��) and thus obtain a sequence of points on the plane. OX is the axis representing 

n and OY is the axis representing ��.  
 

Bounded Sequence : 

                                  As we know about the bounds of a set of real numbers , the similar 

definition is applicable of sequence also. 

 

                A real sequence {��}  is said to be bounded above if there exists a real number G 

such that �� ≤ * for all n ∈ N . G is said to be upper bound of the sequence.   

 

                A real sequence {��}  is said to be bounded below if there exists a real number g 

such that �� ≥ 3 for all n ∈ N . g is said to be lower bound of the sequence.  

 

                 A real sequence {��} is called bounded sequence if it is bounded above as well as 

bounded below. In that case the range of the sequence is a bounded set. 

 

Note :  

                If a sequence {��} is bounded above then the range set is also bounded above and 

by the supremum property of  R , it has the least upper bound M , which is called the 

supremum or least upper bound of the sequence {��} . It satisfies the following properties :  

 

   (i) ��  ≤ 4   for all    � ∈ ! 

             

   (ii) for each pre-assigned positive  ϵ ,there exists a  k ∈ ! such that �5 > 4 − �. 

 

              By similar arguments ,if a sequence {��}  is bounded below , then its has the 

infemum or  greatest lower bound m ,which satisfies the following condition :  

 

     (i) ��  ≥ 7   for all    � ∈ ! 

             

    (ii) for each pre-assigned positive  ϵ ,there exists a  k ∈ ! such that �5 < 7 + �. 

 

                For a unbounded above sequence {��} , we define M = sup{��} = ∞ and for a 

unbounded below sequence {:�} ,we define  m = inf {:�} = −∞ . 

 

 

Examples :  1) The sequence  { 3�+1
�+2 }  bounded. It can shown as follows : 

 

               0 ≤ 
��<�
�<� =  ��<=%>

�<� =  �(�<�)%>
�<�   = 3 − 

>
�<� ≤ 3   for all � ∈ ! . 

 

  Therefore , 3 is the least upper bound and 0 is the greatest lower bound. 
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2) The sequence { ?� } is a bounded sequence . 0 is the greatest lower bound and 1 is the least 

upper bound of the sequence. 

 

3) The sequence {��} is bounded below and unbounded above . Here sup{��} = ∞ and 

inf{��} = 1. 

 

4) Consider the sequence {(−1)��} i.e {−1, 2, −3 ,4 , … … … . } . The sequence is both    

unbounded above and unbounded below . Here sup{(−1)��} = ∞ and inf{(−1)��} = −∞ . 

 

Section 2 :        Limit of a sequence                                                                                .   

                                         

                             A real sequence {��} is said to be convergent to a real number @  or @ is 

said to be limit of the sequence {��} , if for a pre-assigned positive number � > 0 there 

exists a natural number k  (depending on �) such that ,    |�� − @| <  �   for all   � ≥ B  i.e.  

@ − � <  �� < @ + �   for all  � ≥ B  i.e.  ��  ∈ (@ − � , @ + �) for all � ∈ ! . In other words for  

� ≥ B  , �� belongs to the �- neighbourhood of  @.  
 

                            If a sequence has a limit, we say that the sequence is convergent; if it has 

no limit, we say that the sequence is divergent. When a sequence has a limit  , we  will use 

the notation  

 

                                          CDE�→F �� = G or   lim �� = G 

 

             We will sometimes use the symbolism �� → @, which indicates the intuitive idea that 

the values �� ‘‘approach’’ the number @ as � → ∞ . 

 

Note: In order to establish the limit @ of a sequence {��} , we are to start with an arbitrary 

positive number � and then find some positive integer k such that |�� − @| <  �  for all   � ≥
B.  Note that , different � can result different k i.e. the number k may vary as � varies.  

 

Theorem 2.1 : (Uniqueness of limit) A sequence can have at most one limit . 

 

Proof : If possible let @� and @� are two distinct limits of the sequence  {��} ,where @� <  @�. 

  

          Let =   (@� − @�)/2 . Then  � > 0 and @� + � = @� + � . Therefore the neighbourhoods  
(@1 − �, @1 + �)K�L (@2 − �, @2 + �)  are disjoint . Since @� and @� are both limits of the sequence 

,for the chosen � , there exists  natural number B� and B� such that , 

 

      @� − � < �� < @� + �   ,for all � ≥  B� and   @� − � < �� < @� + �    ,for all � ≥  B� . 

 

Let   B = max {B� , B� } . Then , 

 

                                  @� − � < �� < @� + �    and   @� − � < �� < @� + �    ,for all � ≥  B . 

 

Therefore ,  �� ∈ (@1 − �, @1 + �) ∩ (@2 − �, @2 + �)    ,for all � ≥ B . But this can not happen 

since the neighbourhoods (@1 − �, @1 + �) and (@2 − �, @2 + �) are disjoint . So our assumption 

that @� ≠  @� is wrong . 

 

Hence @� = @� and this proves that limit of a sequence is unique .                                           ∎ 
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                                                                                                                            Lecture – 2 : 

Alternative Proof :   Note that , 

  

                                    |@� − @�| = |@� − �� + �� − @�| ≤ |�� − @�| + |�� − @�| 
 

Since the sequence  {��} converges to @� and @� , for a pre-assigned positive   � > 0 , there 

exists two natural number B� and B� such that , 

  

                     |�� − @�| < �\2  for all � ≥ B�       and       |�� − @�| < �\2  for all � ≥ B�  

 

Let  B = max {B� , B� } . Then it follows that , 

 

                      |@� − @�| ≤ |�� − @�| + |�� − @�| <  �    for all � ≥ B . 

 

Since this is true for every > 0 , it follows that  @� =  @� .                                                     ∎ 

 

Remark : Suppose {��}  is a sequence and @ ∈ S . To show that {��}  does not converges to @ 
,we should be able to find an � such that infinitely many point of {��}  are outside the interval 

(@ − �, @ + �). 

 

Exercise 2.1: Show that a sequence {��}  converges to @ if and only if for every open interval 

I containing  , there exists a natural number k such that �� ∈ T for all � ≥ B  . 

 

Note : For @ ∈ S and � > 0 , recall that the neighborhood of @  is the set , 

 

                                   !U(@) = {� ∈ S ∶ |� − @ | < � }  . 

 

Since � ∈  !U(@) is equivalent to |� − @ | < � , the definition of convergence of a sequence 

can be formulated in terms of neighborhoods. We give several different ways of saying that a 

sequence {��}  converges to @ in the following theorem.  

 

Theorem 2.2 : Let {��} is a sequence of real number and let @ ∈ � . Then the following 

statements are equivalent : 

 

(a) {��} is convergent to @ . 
 

(b) For every > 0 , there exists a natural number k  such that � ≥ B , the term ��  satisfy 

|��  − @| < ϵ . 

 

(c) For every > 0 , there exists a natural number k  such that � ≥ B , the term ��  satisfy 

@ − � <  �� < @ + �  . 
 

(d) For every neighborhood !U(@) of  @ ,there exists a natural number k  such that for all 

� ≥ B , the terms �� belongs to  !U(@) . 

 

Proof : The equivalence of (a) and (b) is just the definition. The equivalence of (b) ,(c) and 

(d) follows from the implications : 

 

            |� − @| < �    <=>   −� < � − @ <  �    <=>  @ − � < � < @ + �  <=>  � ∈  !U(@) .    ∎ 
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         ∎ With the idea of neighborhoods one can describe convergence of the sequence {��}  

to a real number @ as : for each �-neighborhood  !U(@) of l , all but a finite number of terms of 

{��}  belongs to !U(@) .  

 

Example 2.1: 

(1) The sequence W �� X is convergent to 0 . 

 

(2) The sequence  W ��<�
�<�  X is convergent to 2.  

 

 (3) Every constant sequence is convergent to the constant term in the sequence. 

 

Solution :  

(1) Let �� =1/n  for all � ∈ !  and let � > 0 be given . We have to identify a natural number 

k such that    �
�   < ϵ for all � ≥ B . Note that , 

 

                                                 1/n  < ϵ   <=>  n >  1/ϵ  

 

Thus if we take B = Y �U Z + 1 ,then we have  

 

                                    |�� − 0| =  1
� < �   for all � ≥ B . 

 

Hence sequence W �� X is convergent to 0 .  

 

(2) Let �� =(2n+1)/(n+1)  for all � ∈ ! and let � > 0 be given. We have to identify a natural 

number k such that , 

                                   [��<�
�<� − 2[ < �        for all � ≥ B  

 

                          i.e.        1/(n+1) < ϵ          for all � ≥ B 

 

                          i.e.       � + 1 > 1\�         for all � ≥ B 

 

                          i.e.        � > 1\� − 1       for all � ≥ B 

 

Now if we take = Y�
U  − 1Z + 1 , then we have 

  

                                         |�� − 2| = 1\(� + 1) < �  for all � ≥ B . 

 

Hence the sequence  W ��<� 
�<� X is convergent to 2 . 

 

(3)  Let �� = a for all ∈ ! . The sequence is {K, K , K , K, … … … . } . Let us choose  � > 0 .  

Now we have , 

                                          |�� − K| = 0 < �   for all  � ≥ 1 . 

 

Thus the sequence {��} converges to a . 
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Definition : A sequence {��} is called eventually constant if there exists B ∈ ! such that 

�5<� = �5  for all � ≥ 1 . The sequence is {�� , �� , … . . , �5 , �5  , �5 , … … … } . 

 

Exercise 2.2 : Show that every eventually constant sequence converges .  

 

Theorem 2.3: A convergent sequence is a bounded sequence . 

 

Proof : Let the sequence {��} converges to @ . Since the sequence converges ,we can take any 

� > 0 we wish and so let us choose � = 1 . For this � there exists a natural number k ∈ � 

such that ,  

                               |�� − @ | <  � = 1   for all � ≥ B . 

 

Then we have  that,  

 

                   |��| = |�� − @ + @| ≤ |�� − @ |+|@ | < 1 + | @ | = \      ,for all � ≥ B . 

 

where 1 + | @ | = \ ∈ � . 

 

Now define , 4 = max { |��| , |��| , … … … , |�5%�| , \}  .Then |��| ≤ 4   , for all � ∈ ! . This 

proves that the sequence {��} is bounded .  

 

Remark : An unbounded sequence is not convergent . Also a bounded sequence may not be 

convergent sequence . For example {(−1)�} is a bounded sequence but the sequence does 

not converge to a limit . 

 

 

Section 3 :     The Algebra of  Convergent sequence                                        .  
 

Theorem 3.1 : (Limit theorem) Let {��} and {:�} are two convergent sequence that 

converges to x and y . Then , 

 

(i) lim (�� ±  :�) = � ± :  ; 

 

(ii) if ∈ � , lim (^��) = ^� ; 

 

(iii) lim ��. :� = �. : ; 

 

(iv) lim 
_`
a` =  _

a , provided {:�} is a sequence of non zero real numbers and : ≠ 0 . 

 

Proof : Proof is left as a exercise . One can find the proof in any standard text book .         ∎ 

 

Theorem 3.2 : (Absolutely convergence) Let {��} be a convergent sequence of real 

numbers converging to x . Then the sequence {|��|} converges to |�| i.e. every convergent 

sequence is absolutely convergent . 

 

Proof :  Let � > 0 be any given positive number . Since the sequence {��} converges to x , 

there a natural number k ∈ ! such that , |�� − �| < � for all � ≥ B . 

 



 

Prof. Indubaran Mandal Page 9 

 

Now we have , 

                             | |��| − |�| | ≤ |�� − �| < �     ,for all � ≥ B . 

 

Since � is arbitrary , this proves that the sequence {|��|} converges to |�| .                        ∎ 

 

Note : The converse of the above theorem is not true . For example ,let �� = (−1)� .Then 

the sequence {|��|} , which is a constant sequence {1,1 ,1, … … . } , is converges to 1 but the 

sequence {��} is not convergent . 

 

Theorem 3.3 : If  {��} is a convergent sequence of real numbers and �� > 0 for � ∈ ! .Then 

� = lim �� ≥ 0 . 

 

Proof : Suppose the conclusion is not true and if possible let � < 0 . Then −� > 0 ,a positive 

number . Let us choose a positive �  such that 0 < � < −�  .Since {��} converges to x ,there 

exists a natural number k such that , 

 

                           � − � < �� < � + �     for all � ≥ B . 

 

In particular we have   �5 < � + � < 0 . But this contradicts the hypothesis that �� > 0 for 

∈ ! . Therefore our assumption is not valid , this implies that  � ≥ 0 .                                  ∎ 

 

Note : The above theorem is also true for a sequence {��} such that  �� ≥ 0 for � ∈ ! . 

 

Remark :    If {��} is a sequence of real numbers converges to x and suppose that �� ≥ 0 for 

all � ∈ ! .Then the sequence {c��} of positive square roots converges  and  lim c�� = √� . 

We now give a useful result which is formally stronger than the previous theorem. 

 

Theorem 3.4 : If {��} and {:�} are two convergent sequence of real numbers and �� <  :�  
for all � ∈ ! , then lim �� ≤ lim :� .  

 

Proof : Let e� = :� − �� . Then by the given hypothesis e� > 0 for all ∈ ! . It follows from 

the previous theorem that , 

 

                         0 ≤  lim e� = lim :� − lim �� , 

 

Consequently , lim �� ≤ lim :� .                                                                                            ∎ 

 

Note : The above theorem is also true for two convergent sequence {��} and {:�} such that 

�� ≤  :� for all � ∈ ! . 

 

Exercise 3.1 : If {��} is a convergent sequence real numbers  and if  K ≤ �� ≤ f for all 

� ∈ ! , then K ≤ lim �� ≤ f . 

 

Example 3.1: Let �� = �
�<�  and  :� = �

�  . Then  �� < :�  for all  � ∈ ! but ,  

 

                   :� − �� = �
�(�<�) → 0  , hence lim �� = lim :� . 
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                                                                                                                                   Lecture -3: 

Theorem 3.5 (Sandwich Theorem) :   Let {��} , {:�} and {e�} are sequence of real numbers 

such that , 

                                       �� <  :� <  e�    for all  � ∈ !  

 

 If  lim �� = lim e� = @  , then {:�} is convergent and lim :� = @ .  
 

Proof : Let � > 0 . It follows from the convergence of the sequence {��} and {e�} that there 

exists natural numbers B�  and B� such that  , 

 

             |�� − @| < �   for all � ≥  B�    and  |e� − @| < �   for all � ≥  B� . 

 

Let = max { B�, B�} . Then we have , 

 

            @ − � <  �� < @ + �    and     @ − � <  e� < @ + �     for all � ≥ B . 

 

Therefore the given hypothesis implies that , 

 

                            @ − � <  �� <  :� <  e� < @ + �   for all � ≥ B . 

 

Consequently,  @ − � <  :� <  @ + �  for all ≥ B , which gives , |:� − @| < � for all � ≥ B. 

 

This shows that the sequence {:�} convergent and converges to  .                                       ∎ 

 

Note : The above theorem is also true for the sequence of real numbers {��} ,{:�} and {e�} 

such that �� ≤ :� ≤ e� for all � ∈ ! . 

 

Null sequence : A sequence {��} is said to be a null sequence if lim �� = 0 . 

 

Theorem 3.6: If {��} is a null sequence then {|��|}  is also a null sequence and conversely . 

 

Proof : Since {��} is a convergent sequence and converging to zero , by the Absolutely 

convergence theorem {|��|} is also convergent and converges to |0| = 0 . 

 

Conversely let , lim  |��| = 0 . Let us choose a positive number  � > 0 . There exists a 

natural number k such that , 

 

                           |�� − 0|  = |��|  =  | |��| − 0 | < �     ,for all  � ≥ B . 

 

This proves  lim �� = 0 .                                                                                                         ∎ 

 

 

Example 3.2:    lim �→F  
�g<��

��g<�%� = �
�   . 

 

Solution : lim �→F  
�g<��

��g<�%� = lim�→F 
�<�/�

�<�/�%�/�g =  
hij(�<�/�)

hij (�<�/�%�/�g)  
 

                                           = 
�<  hij  �/�

�<  hij �/�% hij �/�g = �<k
�<k%k  =  �

� .  
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Example 3.3:  lim l �
√�g<� + �

√�g<� + ⋯ + �
√�g<�n = 1 . 

 

Solution :  Let �� =  �
√�g<� + �

√�g<� + ⋯ + �
√�g<�  . 

 

                 We have ,  
�

√�g<� < �
√�g<�   ,  �

√�g<� < �
√�g<�  ,….. , , 

�
√�g<� < �

√�g<� 

 

Therefore ,  �� <  �
√�g<� + �

√�g<� + ⋯ + �
√�g<� =  �

√�g<�       ,for all � ≥ 2 . 

 

Again ,  
�

√�g<� + �
√�g<�  > �

√�g<�  

 

             
�

√�g<� + �
√�g<� + �

√�g<� >  �
√�g<�       and so on . 

 

Therefore , �� >  �
√�g<�     for all � ≥ 2 .  

 

Thus ,   
�

√�g<� < �� <  �
√�g<�     for all � ≥ 2 . 

 

Now ,  lim 
�

√�g<� = lim 
�

c�<�/� = 1  and   lim  
�

√�g<� = lim 
�

c�<�/�g  = 1 . 

 

Therefore by the Sandwich theorem , lim �� = 1 . 

 

 

Section 4 :       Divergent Sequence                                                     .  
 

(i) A real sequence {��} is said to diverge to +∞ ,if  for every 4 > 0 , however large , there 

exists a natural number k such that , 

               

                                      �� > 4   for all � ≥ B . 

 

In this case we write , lim �� = ∞ . 

 

(ii) A real sequence {��} is said to diverge to −∞ ,if  for every 4 > 0 , however large , there 

exists a natural number k such that , 

               

                                      �� <  −4   for all � ≥ B . 

 

In this case we write , lim �� = −∞ .  

 

A real sequence {��} is said to be properly diverges if it either diverges to +∞  or  −∞ .  

 

Theorem 4.1:  

(a) A sequence diverging to +∞ is unbounded above but bounded below .  

 

(b) A sequence diverging to −∞ is unbounded below but bounded above . 
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Proof : Proof  is left as an exercise .                                                                                      ∎ 

 

Note : Converse of the above theorem is not true i.e  a sequence unbounded above but 

bounded below may not diverges to +∞  and a sequence unbounded below but bounded 

above may not diverges to −∞ .  

                   For example ,consider the sequence {�(%�)`}  i.e. { 1, 2 , �
�  , 4, �

> , … . } , The 

sequence is unbounded above and bounded below , 0 is a lower bound . But the sequence 

does not diverges to +∞ . 

 

Alternating sequence : If a sequence {��} is such that , ��. ��<� < 0  for all � ∈ ! , that is 

{��} changes sign alternately , then we say {��} is a alternating sequence .  

 

       An alternating sequence converge or diverge . For example the sequence {(−1)�}  

diverges , whereas {(−1)�/�}  converges to 0 . 

 

Oscillatory sequence : A sequence which neither converges nor diverges to +∞ or −∞ is 

called oscillatory sequence .  

                            A bounded sequence that is not convergent is called an oscillatory sequence 

of finite oscillation . An unbounded sequence that is not properly divergent is called an 

oscillatory sequence of infinite oscillation . 

 

Examples 4.1: (1) The sequences  {2�} ,{3�}, {��} where � > 1  diverges to +∞ . 

 

(2) The sequences {−2�} ,{−��}  diverges to −∞ . 

 

(3) The sequence {(−1)�} is not convergent and also does not diverges properly .It is an 

oscillatory sequence with finite oscillation . It oscillate between −1 and 1 . 

 

(4) The sequence {(−1)� �} is an unbounded sequence and it is not properly divergent .It is 

an oscillatory sequence of infinite sequence . 

 

(5) The sequence {1 + (−1)�} oscillates finitely between 0 and 2 . 

 

 

∎   The following model can be easily remembered about the behavior of a sequence with 

respect to convergence or divergence : 

 

                                                     Sequences 

                                                            

 

 

               Convergent                                                                Non-Convergent  

 

                       

                                          Properly divergent                                           Improperly divergent 

                                                    

 

     Diverges to +∞                 Diverges to −∞          Oscillates finitely      Oscillates infinitely 
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∎  Some useful limits  : 
 

Example 4.2: Let |K| < 1 , then lim K� = 0 . 

 

Solution : Let K ≠ 0 , because lim K� = 0 is clear for K = 0 .  

 

Now   
�

|o| > 1 , since  |K| < 1 . We may write   
�

|o| = 1 + f  where f > 0  i.e. |K| = 
�

�<p  . 

 
By the Bionomial theorem we have , 

 

                    (1 + f)� = 1 + �f + 
�(�%�)

�  f� + ⋯ + f�  > �f  for all � ∈ ! . 

So ,  

                    |K� − 0| = |K�| = 1
(1+f)�  < 

�
�p   for all � ∈ ! . 

 

Therefore ,  |K� − 0| < �  holds if  
�

�p  < �  i.e.  if  � > 1/f� . 

 

Let = Y �
pUZ + 1 . Then k is a natural number such that ,  |K� − 0| < �   for all � ≥ B . 

 

Hence,  lim K� = 0 . 

 

Example 4.3 : lim ��/ � = 1 . 

 

Solution : Let K� = ��/� − 1 and note that K� > 0 for all � ≥ 2 . To prove the limit it is 

sufficient to show that lim K� = 0.  
 

      Since  1 + K� = ��/� ,we have � = (1 + K�)� . For � ≥ 2 , by the bionomial theorem we 

have , 

                    � = (1 + K�)� ≥ 1 + �K� + �
�  �(� − 1)K�� > �

�  �(� − 1)K��   . 
 

Thus , � > �
� �(� − 1)K��   , so K�� < �

�%� .  Thus , we have shown that 0 < K� < q �
�%�   for all  

� ≥ 2 .           
Since lim q �

�%�  = 0  , by Sandwich theorem we get  lim K� = 0 . Thus , lim ��/ � = 1 . 

 

Example 4.4 : lim K�/� = 1  if K > 0 . 

 

Solution : Suppose K ≥ 1 . Then for � ≥ K ,we have 1 ≤ K�/� ≤ ��/� . Since lim ��/�  = 1 

,it is easily follows that lim K�/�  = 1.  Suppose that 0 < K < 1 . Then 1/K > 1 , so that 

lim l�
on�/� = 1.  Thus , 

lim r1
Ks

�/�
= lim 1�/�

K�/� =  lim 1�/�  
lim K�/� =  1

lim K�/� = 1. 
 

This gives , lim K�/� = 1 . 
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Theorem 4.2 : Let {K�} and {f�} are two sequences such that lim K� = +∞ and lim f� > 0 .    

Then lim K�f� = +∞ . 

 

Proof : Let 4 > 0 . Choose a real number m so that , 0 < 7 < lim f� . Whether lim f� =
+∞  or not ,there exists a natural number B� such that f� > 7  for all � ≥ B� . Since 

lim K� = +∞ , there exists a natural number B� such that , 

 

                                                K� > 4/7  ,for all � ≥ B� . 
 

Let = max{B� , B�} . Then we have , 

 

                     K� > 4/7   and f� > 7  ,for all � ≥ B    . 

 

Which gives ,  K�f� > t
u . 7 = 4   , for all � ≥ B . Therefore , lim K�f� = +∞ .               ∎ 

 

Theorem 4.3: For a sequence {K�} of positive real numbers  lim K� = +∞  if and only if 

lim 1/K� = 0 . 
 

Proof : Let {K�} be a sequence of positive real numbers . Suppose that , lim K� = +∞  . 
 

Let � > 0  and = 1/� . Since {K�} diverges to +∞ ,there exists a natural number B� such that 

, K� > 4 = 1/�  for all � ≥ B� . Therefore , if � ≥ B then 0 < 1/K� < �  , so 

 

                             [ �
o` − 0[ = 1/K� < �    for all � ≥ B� . 

 

Thus , lim 1/K� = 0. 
 

Conversely let , lim 1/K� = 0 and 4 > 0 . Let � = 1/4 .Then since � > 0 there exists a 

natural number B� such that ,  

 

                                      [ �
o` − 0[ < � = 1/4     for all � ≥ B� . 

 

Since K� > 0 , we have 1/K�  < 1/4  ,for all � ≥ B� . Which gives , there exists a natural 

number B� such that , K� > 4 for all � ≥ B� . 

 

Thus , lim K� = +∞ .                                                                                                              ∎ 

 

 

            We will now complete this section by stating two useful theorem without proof . 

Proof can be found in any standard book.  

 

Theorem 4.4: (Ratio test) Let {K�} be a sequence of positive real numbers such that , 

lim o`vw
o` = @ . If 0 ≤ @ < 1  then lim K� = 0 and if @ > 1 then  lim K� = ∞ . 

 

Theorem 4.5: (Root test) Let {K�} be a sequence of positive real numbers such that , 

lim(K�)�/� = @ .If  0 ≤ @ < 1  then K� = 0   and   if @ > 1 then    lim x� = ∞ .                     ∎ 
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Section 5 :         Monotone Sequence                                       Lecture - 4         .   

                       

                                      Until now, we have obtained several methods of showing that a sequence 

{��} of real numbers is convergent . all of these methods require that we already know (or at 

least suspect) the value of the limit, and we then verify that our suspicion is correct. 

          There are many instances, however, in which there is no obvious candidate for the limit 

of a sequence, even though a preliminary analysis may suggest that convergence is likely. In 

this and the next two sections, we shall establish results that can be used to show a sequence 

is convergent even though the value of the limit is not known. The method we introduce in 

this section is more restricted in scope than the methods we give in the next two, but it is 

much easier to employ. It applies to sequences that are monotone in the following sense. 

 

Definition :  Consider a sequence real number {��} . 

 

       (i) {��} is said to be a monotone increasing sequence if  ��<� ≥ ��  for all � ∈ ! . 
 

       (ii) {��} is said to be a monotone decreasing sequence if  ��<� ≤ ��  for all � ∈ ! . 
 

 If strict inequality occurs in (i) and (ii) ,then we say we say that sequence is strictly 

increasing and strictly decreasing respectively .  

 

                     A sequence is {��} is said to be simply monotone ,if it is either monotone 

increasing or monotone decreasing . 

 

Examples 5.1:  (1) Consider the sequence {��} where �� = 2�  i.e. {2, 4, 8 , … . . } . Then , 

��<� > �� for all � ∈ ! . Therefore the sequence {��} is a monotone increasing sequence . It 

is also strictly monotone increasing . 

 

(2) Consider the sequence {��} where , �� = 1/� ,  i.e. {1 , �
� , �

� , … . . }  . Then , ��<� < �� for 

all � ∈ ! . Therefore the sequence {��} is a monotone decreasing sequence . It is also strictly 

monotone decreasing . 

 

(3) The sequence {(−2)�} i.e. {−2 ,2 , −2 ,2 , … } is neither monotone increasing sequence 

nor monotone decreasing sequence . 

 

Theorem 5.1: (i) A monotone increasing sequence ,if bounded above ,is convergent and it 

converges to the least upper bound . 

 

(ii) A monotone decreasing sequence , if bounded below , is convergent and it converges to 

the greatest lower bound . 

 

Proof :  (i) Let {��} be a monotone increasing sequence which is bounded above and M is the 

least upper bound of {��} . Then , 

(a) �� ≤  4  for all � ∈ !  and 

(b) for a pre-assigned � > 0 ,there exists a natural number k  such that , �5 > 4 − � . 



 

Prof. Indubaran Mandal Page 16 

 

Since  {��} is a monotone increasing sequence , 

 

4 − � < �5 < �5<� < �5<� < ⋯ ≤ 4 < 4 + � 
 

That is , 4 − � < �� < 4 + � for all � ≥ B.  This shows that  the sequence {��} is 

convergent and converges to M .  

 

(ii) Left as an exercise .                                                                                                          ∎ 

 

Monotone Convergence Theorem : A monotone sequence of real numbers is convergent if 

and only if it is bounded . 

 

Proof : By using the previous Theorem 5.1 one can easily prove the result . It is left as an 

exercise.                                                                                                                                   ∎ 

 

Theorem 5.2: (i) A monotone increasing sequence that is unbounded above diverges to +∞. 
 

(ii) A monotone decreasing sequence that is unbounded below diverges to −∞ . 
 

Proof : (i) Let {��} be a monotone increasing sequence which is unbounded above . Since the 

is unbounded above , for every 4 > 0 ,however large , there exists a natural number k such 

that �5 > 4 . 
 

Since {��} is monotone increasing sequence , we have 

 

                                4 < �5 < �5<� < �5<� < ⋯ 
 

That is , �� > 4  for all � ≥ B . This proves that {��} diverges to +∞. 
 

(ii) Left as an exercise .                                                                                                          ∎ 

 

Remark : A monotone sequence has a definite behavior .It is either convergent or properly 

divergent . That is a monotone sequence can never oscillate . 

 

Example 5.2: The sequence {1/�} is monotone decreasing sequence and bounded below , 

zero being a lower bound . Therefore {1/�} is convergent and converges to the greatest lower 

bound ,which is 0 . 

 

Example 5.3: If   �� =  
��%�
�<�  , prove that {��} is monotone increasing and bounded .  

 

Solution : ��<� − �� = 
�(�<�)%�
(�<�)<� − ��%�

�<�  = 
��<�
�<� − ��%�

�<�  =  y
(�<�)(�<�)  > 0 ,for all n. 

 

So , ��<� > ��  for all � ∈ ! . Therefore {��} is a monotone increasing sequence .  

 

Also , �� =  
��%�
�<�  = 

�(�<�)%y
�<�   = 3 − 

y
�<� < 3   for all � ∈ !.  
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Thus the sequence is bounded above . Also being a monotone increasing sequence {��} 

certainly a bounded below sequence (because , �� > �� = 2/3) . Hence {��} is bounded . 

 

Since {��} is monotone increasing and bounded above , by the previous theorem we get {��} 

is convergent and converges to least upper bound  .                                                                ∎ 

 

 

Section 6 :           Subsequence                                                             .  
                            

                                      In this section we will introduce the notion of a subsequence of a 

sequence of real numbers. Informally, a subsequence of a sequence is a selection of terms 

from the given sequence such that the selected terms form a new sequence. Usually the 

selection is made for a definite purpose. For example, subsequences are often useful in 

establishing the convergence or the divergence of the sequence. We will also prove the 

important existence theorem known as the Bolzano-Weierstrass Theorem, which will be used 

to establish a number of significant results.  

Definition : Let {��} be a sequence of real numbers and {~�} be a strictly increasing sequence 

of natural numbers i.e. ~� < ~� < ~� < ⋯ < ~� < ⋯  . Then the sequence {��̀ } is said to be a 

subsequence of the sequence {��} . The elements of the subsequence {��̀ } are ��w ,
��g ,  ��� , … , ��̀  , … .  . 

                         With the concept of subset one can relate the concept of the subsequence . 

Like subset the elements of the subsequence {��̀ } are nothing but the elements of {��} which 

are chosen in some proper way. So the range set {��̀ : � ∈ !} of the subsequence is the subset 

of the range set {�� ∶ � ∈ !} of the sequence {��}. 
Example 6.1 :(1) Let �� = 1/� and ~� = 2� . Then ���̀ � = {��, ��, �=, … } = { ��  , �

�  , �
= , … } 

is a sequence of {��}. 
(2) Let �� = (−1)�  . Then {���} = {��, �� , �= , … . } = {1, 1, 1, 1, … . } and {���%�} =
{��, �� , �> , … . } = {−1, −1, −1, … . } are two subsequences of {��}. 
 

                              A sequence may not converge, but it can have convergent subsequences. 

For example, we know that the sequence {(−1)�} diverges, but the subsequences {1 ,1 ,1 , … } 

and {−1, −1, −1, … } are convergent subsequence of {(−1)�} . However we have the 

following result : 

Theorem 6.1: If a sequence {��} converges to x ,then every subsequence of {��} is also 

converges to x . 

Proof : Let ���̀ � be a subsequence of {��} . Also let us chose a > 0 .  Since {��} converges 

to x, therefore there exists a natural number k such that, |�� − �| < � for all � ≥ B. 
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     Since {~�} is a strictly increasing sequence of natural number , there exists a natural 

number B� such that , ~� > B for all � ≥ B�  (since k  depends on � , B� is also depends on �) 

 

Therefore ,���̀ − �� < �  for all � ≥ B� . This shows that , lim ��̀ = � .  Hence proved .     ∎ 

 

Remark :  If  a sequence {��} of real numbers has either of the following properties ,then 

{��} is divergent – 

 

(i) If {��} has two subsequences {��̀ } and {�5`} whose limits are not equal . 

 

(ii)If  {��} has a divergent subsequence . 

 

(iii) If {��} is unbounded . 

 

Example 6.2 : The sequence {(−1)�} i.e. {−1, 1 , −1 ,1 , … } is divergent .  

 

         The subsequence {(−1)��}  i.e. {1, 1 , 1 , … } converges to 1 and the subsequence 

{(−1)��%�}  i.e. {−1 , −1 , −1 , … } converges to −1  . Since two different subsequences 

converges to different limit , so by the above result we may conclude that {(−1)�} diverges . 

 

                 ∎ What about the converse of the above Theorem 6.1? Obviously, if all 

subsequences of a sequence {��} converge to the same limit x, then {��} also has to converge 

to x, as {��} is a subsequence of itself.   

 

                     Suppose every subsequence of {��} has at least one subsequence which 

converges to x. Does the sequence {��} converges to x? The answer is affirmative, as the 

following theorem shows. 

 

Theorem 6.3: If every subsequence of {��} has at least one subsequence which converges to 

x, then {��}  also converges to x. 

 

Proof : Left as an exercise .                                                                                                     ∎ 

 

Theorem 6.4: If the subsequences {���} and {���%�} of a sequence {��} converge to the 

same limit x ,then the sequence {��} is also convergent and converges to x .  

 

Note : If two subsequences of a sequence converge to the same limit ,the sequence {��} may 

not be convergent . For example  consider the sequence {��} = { sin ��
�  } . The subsequence 

{���%y} and {���%>} converges to 1/√2 , but the sequence {��} is not convergent . 

 

 

Theorem 6.5: Every subsequence of a monotone increasing (decreasing) sequence of real 

numbers is monotone increasing (decreasing) . 

 

Proof : Left as an exercise .                                                                                                      ∎ 
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                                                                                                                                  Lecture -5 

Theorem 6.4 : A monotone sequence of real numbers having a convergent subsequence with 

limit @ , is convergent with limit @ . 
 

Proof : Let {��} be a monotone increasing sequence and {��̀ } is a subsequence of {��} such 

that , lim ��̀ = @ .  Then {��̀ } is monotone increasing and being a convergent sequence ,it is 

bounded above also.  

 

           Now we assert that {��} is bounded above . If possible let ,{��} is unbounded above . 

Then for a real number  4 > 0 ,however large ,there exists a natural number B ∈ ! such that 

, �� > 4 for all � ≥ B . 

 

          Since {~�} is a strictly increasing sequence of natural number , therefore there exists a 

natural number B� such that , ~� > B for all � ≥ B� . Consequently , ��̀ > 4 for all � ≥ B� .  

 

          Since M is arbitrary , we have  lim ��̀ = +∞ . Which is a contradiction .So our 

assumption is wrong  i.e. {��} is bounded above . Also since {��} is monotone , it is 

convergent . 

 

Now let , lim �� = 7 . Then {��̀ } being a subsequence of {��} ,it is also convergent to m . 

Therefore = 7 . Thus {��} is also converges to  .                                                                   ∎ 

 

 

The Existence of Monotone Subsequence :  

 

                      While not every sequence is a monotone sequence, we will now show that 

every sequence has a monotone subsequence.  

 

Monotone Subsequence Theorem : Every sequence of real numbers has a monotone 

subsequence . 

 

In order to prove this theorem let us introduce what we call a peak of a sequence: 

 

Peak of a sequence :  

                                     Let {��} is a sequence of real numbers . An element �5 is said to be a 

peak of the sequence {��} if , �5 ≥ ��  for all � > B i.e. �5 is greater or equal to all 

subsequent elements beyond �5 . A sequence may or may not have a peak or else it may have 

a finite or infinite number of peaks . 

 

Example 6.3:  (1) Consider the sequence {��} = {�−1��}  i.e. {−1 , 1 , −1 , 1 , … }  .Here 

�� = 1 ≥ �� for all > 2 . Therefore �� is a peak . Similarly �� , �=  are also peaks .  Actually 

the sequence {��} has infinitely many peaks which are �� , �� , �= , ��, …. .  
 

                      Also the collection of the peaks {��, �� , �= , �� , … } is monotone subsequence 

of {��} . 

 

(2) Let �� = ��%��`
  .The sequence is {1 , 2 , �

�  ,4 , �
>  , … } . Here the sequence has no peak . 
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Proof of Monotone subsequnce theorem : We consider the following cases . 

 

Case – I : Let {��} have infinitely many peaks . Let the peaks are ��w , ��g  , ���  , …   (where 

{~�, ~� , ~� , … . . } is increasing sequence of natural number .) i.e. ��w  is the first peak ,��g is the 

second peak and so on . Then , ��w ≥ ��g ≥ ��� ≥ ⋯  . The subsequence {��̀ } is a monotone 

decreasing subsequence . 

 

Case – II : Let {��} has finite number (possibly zero) of peaks . Let these peaks be listed by 

increasing subscripts : ��w  , ��g  , . . … , ���  . Let �� = ~u + 1 be the first index beyond the 

peak . Then ��w  is not a peak and no peak beyond ��w . 

 

             Since ��w  is not a peak ,there exists a natural number �� > �� such that ��g > ��w . 

Again since ��g  is not a peak ,there exists a natural number �� > �� such that , ��� > ��g . 

Continuing this way we obtained a strictly increasing sequence of natural number {��} and a 

monotone increasing subsequence {��`} of {��} .                                                                   ∎ 

 

Note : It is not difficult to see that a given sequence may have one subsequence that is 

increasing, and another subsequence that is decreasing. As example ,the sequence {��%��`} i.e  

 {1 , 2 , �
�  , 4 , �

>  , 6 , … . } has two subsequences,  {2, 4 , 6 , … } ,which is monotone increasing 

and {1 , �
�  , �

>   , … } , which is monotone decreasing . 

 

 

The Bolzano-Weierstrass Theorem                                                                                         .       

 

                                  We will now use the Monotone Subsequence Theorem to prove the 

Bolzano-Weierstrass Theorem, which states that every bounded sequence has a convergent 

subsequence. This theorem can also be proved by using Nested Interval Property , One can 

find this proof in any standard text book . 

 

The Bolzano-Weiertrass Theorem : Every bounded sequence of real numbers has a 

convergent subsequence . 

 

Proof : Let {��} be a bounded sequence of real numbers . It follows from the Monotone 

Subsequence Theorem that , {��} has a monotone subsequence ���̀ �. Since {��} is bounded , 

then the subsequence ���̀ � of {��} is also bounded .  

 

              Since {��̀ } is a monotone and bounded subsequence ,then from Monotone 

Convergence Theorem we have {��̀ } is convergent . Therefore {��̀ } is convergent 

subsequence of {��}  . This proves our result .                                                                        ∎ 

 

Note : A unbounded sequence may have a convergent subsequence . For example , consider 

the sequence {��%��`} i.e. {1 , 2 , �
�  , 4 , �

>  , 6 , … } . It is unbounded above but it has a 

convergent subsequence { 1 , �
�  , �

>  , … } ,converges to 0 . 

 

 

 



 

Prof. Indubaran Mandal Page 21 

 

Section 7:       Limit Superior and Limit Inferior                             . 
                                

                       A bounded sequence of real numbers {��} may or may not converge, but we 

know from the Bolzano-Weierstrass Theorem that there will be a convergent subsequence 

and possibly many convergent subsequences. We now introduce the concept of subsequential 

limit . 

 

Subsequential Limit : Let {��} is a real sequence . A real number x is said to be a 

subsequential limit of the sequence {��} if there exists a subsequence of {��} converges to x . 

Note that the limit of a sequence ,if it exists ,is also a subsequential limit of the sequence . 

 

Example 7.1: (1)  Consider the sequence {�−1��} . Then the subsequences {1 ,1 ,1 … } and 

{−1 , −1 , −1 , … } converges to 1 and −1  respectively . Therefore 1 and  -1 are 

subsequential limits of {��} . 

 

(2) Consider the sequence {��%��� } i.e. {1 , 2 , �
� , 4 , �

> , 6 , … } Then the subsequences 

W1 , �
�  , �

> … X converges to 0 . Therefore 0 is a subsequential limit of  {��%��� } . 

 

 

Theorem 7.1: A real number x is a subsequential limit of {��} if and only if every 

neighbourhood of  x  contains infinitely many elements of {��} .  
 

Proof : Left as an exercise . 

  
       ∎ Let {��} be a bounded sequence of real numbers .Then by Bolzano-Weiertrass 

theorem there is a subsequential limit of {��} . Let S denote the set of all subsequential limits 

of {��} . Since {��} is bounded , the set S is also bounded .  

  

               If  S is finite , then S has a greatest element and a least element . Also if  S is an 

infinite set , then being a bounded set  it can be proved that  S has a greatest as well as least 

element . 

 

Definition : Let {��} be a bounded sequence of real numbers . 

 

(a) The greatest subsequential limit of {��} is said to be upper limit or limit superior of 

{��} and it is denoted by   lim  ��  or lim  sup �� .  

 

(b) The least subsequential limit of {��} is said to be lower limit or limit inferior of {��} 

and it is denoted by   lim  ��  or lim  inf �� .  

 

Note : If {��} is unbounded above then we define , lim  �� = ∞ and if unbounded below then 

we define , lim  �� = −∞ . 

 

Example 7.2:  (1) Let �� = �−1�� . Then the sequence {��} is bounded and the set of 

subsequential limits = {1, −1} . Therefore   lim  �� = 1  and   lim  �� = −1  . 
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(2) Let �� = 1/� . Then the sequence ���
 is bounded and 0 is the only subsequential limit 

i.e.  � � �0
 . Therefore  lim  �� � lim  �� � 0  . 

 

(3) Let �� � ��%��
`
 . Then ���
 is unbounded above and bounded below  and � � �0
 . 

Therefore  lim  �� � ∞  and lim  �� � 0 . 

 

(4) Let �� � ��1���� . Then ���
 is unbounded above and unbounded below and Therefore 

 lim  �� � ∞  and lim  �� � �∞  . 

 

   We will now state two useful theorem about limit superior and limit inferior without 

proof. 

 

Theorem 7.2: If ���
 is a bounded sequence of real numbers, then the following statements 

for a real number �∗ are equivalent. 

 

(a) �∗ � lim sup  ��  . 

 

(b) For 6 0 , �� 6 �∗ � � for infinitely many values of n and there exists a natural number k 

such that �� 8 �∗ & �  for all � ' B. 
 

(c) If S is the set of subsequential limits of ���
 ,then �∗ � sup � . 

 

Theorem 7.3: If ���
 is a bounded sequence of real numbers, then the following statements 

for a real number �∗ are equivalent. 

 

(a) �∗ � lim inf  ��  . 

 

(b) For 6 0 , �� 8 �∗ & � for infinitely many values of n and there exists a natural number k 

such that �� 6 �∗ � �  for all � ' B. 
 

(c) If S is the set of subsequential limits of ���
 ,then �∗ � inf � . 

 

      By using these above two theorems we will now prove the following useful result . 

 

Theorem 7.4: A bounded sequence ���
 is convergent if and only if  lim  �� � lim  �� . 

 

Proof : Let ���
 is a convergent sequence and lim�� � � .  Since ���
 is converges to x , 

every subsequence of ���
 converges to x . Therefore x is the greatest as well as least 

subsequential limit . That is ,  lim  �� � lim  ��  . 

 

Conversely let , ���
 be a bounded sequence such that lim  �� � lim  �� � � . 

 

      Since lim  �� � � , for � 6 0 there exists a natural number B� such that , �� 8 � & � for 

all � ' B� .  

 

      Again since  lim  �� � � , for � 6 0 there exists a natural number B� such that , �� 6 � �

� for all � ' B� .  
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                                                                                                                               Lecture – 5 : 

Let = max{B� , B�} . Then , � − � < �� < � + �  for all � ≥ B . This proves that , lim �� =
� .  That is {��}  converges .                                                                                               ∎ 

 

           The above theorem can be restated as – ‘A bounded sequence is convergent if and only 

if it has only one subsequential limit’ . Next we will state a useful theorem without proof . 

 

Theorem 7.5 : Let {��} and {:�} are bounded sequences . Then , 

 

       (i) lim  �� +  lim  :� ≥  lim  ��� + :��  

 

       (ii) lim  �� +  lim  :� ≤  lim  ��� + :�� .  
 

 

Section 8 :        The Cauchy Criterion:                                              .  
 

                             So far we have discussed several methods of establishing convergence of a 

real sequence .In most of the methods , a prior knowledge of the limit is necessary . If 

however a sequence is monotone , the convergence can be established without any pre-

conceived limit . 

 

                      The Monotone Convergence Theorem is extraordinarily useful and important, 

but it has the significant drawback that it applies only to sequences that are monotone. It is 

important for us to have a condition implying the convergence of a sequence that does not 

require us to know the value of the limit in advance, and is not restricted to monotone 

sequences. The Cauchy Criterion, which will be established in this section, is such a 

condition  

 

Definition : A sequence {��} is said to be a Cauchy sequence if  every � > 0 there exists a 

natural number k (depends on �� such that , 

 

                                 |�u − ��| < �  for all 7 , � ≥ B . 
 

      Replacing m by � + � where � = 1, 2 , 3 , … the above condition can be equivalently 

stated as , 

 

                                   ���<� − ��� < �   for all  � ≥ B . 

 

 

Example 8.1 :  

 

(1) The sequence W �� X is a Cauchy sequence . 

 

         Let �� = 1/�   . For a pre-assigned > 0 , we choose a natural number k , large enough , 

such that 2/B < � . Then , 

 

                         |�u − ��| = [ �
u − �

� [ ≤  �
u + �

� ≤  �
5 + �

5 = �
5 <  �     ,if  7 , � ≥ B .  
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This proves that the sequence {��} is Cauchy sequence . 

 

(2) The sequence {1 & ��1��
 is not Cauchy . 

 

           Let �� � 1 & ��1�� . Then |�u � ��| � |��1�u � ��1��|  . Therefore , 

 

                              |�u � ��| � 0      , if m and n are both odd or even . 

                                                � 2       , if one of m , n is odd and the other is even .  

 

Let us choose � 1 6 0 .  Then it is not possible to find a natural number k such that , 

|�u � ��| 8 � .  This proves the sequence ���
 is not Cauchy . 

 

                Our goal is to show that the Cauchy sequences are precisely the convergent 

sequences. We first prove that a convergent sequence is a Cauchy sequence. 

 

Theorem 8.1: A convergent sequence is a Cauchy sequence . 

 

Proof : Let ���
 be a convergent sequence and lim �� � � . Then for given � 6 0 ,there 

exists a natural number k such that , |�� � �| 8 �/2  for all � ' B .  

 

 If �,7 ' B then , |�� � �| 8 �/2  and |�u � �| 8 �/2 .  Therefore ,  

 

                 |�u � �� | � |�u � � & � � �� | � |�u � �| & |�� � �| 

                                                                              
                                                                         8 �/2 & �/2 � �  for all � ,7 ' B . 
 

This proves that ���
 is a Cauchy sequence .                                                                        ∎ 

 

Theorem 8.2: A Cauchy sequence of real numbers is bounded . 

 

Proof : Let ���
 be a Cauchy sequence  and let � � 1 . Then there exists a natural number k 

such that , |�u � ��| 8 � � 1  for all  �,7 ' B . Taking 7 � B ,we have  |�� � �5| 8 1 for 

all � ' B.  
 

Therefore by Triangle inequality , |��| � |�� � �5 & �5| � |�� � �5| & |�5| 8 1 & |�5|  , 

for all � ' B .  If we set , 

 

                                  4 � max� |��|  , |��| , … , |�5%�| , 1 & |�5| 
 
 

This proves ���
 is a bounded sequence .                                                                            ∎ 

 

Cauchy Convergence Criterion : A sequence of real numbers is convergent if and only if it 

is a Cauchy sequence . 

 

Proof : We have seen , in Theorem 8.1  , that a convergent sequence is Cauchy .  

 

Conversely let ���
 is a Cauchy sequence . We will show that ���
 is convergent to some real 

number. 
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        Since {��} is Cauchy , then by the previous theorem {��} is bounded . Therefore by 

Bolzano-Weiertrass theorem {��} has a converges subsequence and let the subsequence 

converges to x . 

 

 Let us choose > 0 . Since {��} is Cauchy ,there exists a natural number k such that , 

 

                                 |�u − ��| < �/2   for all  � , 7 ≥ B . 

 

Since � is a subsequential limit , then by theorem 7.1  the neighborhood  !�
g
���  of  x 

contains infinitely many elements of {��} . Therefore there exists a natural number q such 

that , ��� − �� < �/2 . 

 

Since  � > B , we have   ��� − ��� < �/2   for all  � ≥ B . Therefore , 

 

            |�� − �| = ��� − �� + �� − �� ≤ ��� − ��� + |�� − �| 
 

                                                               < �/2 + �/2 = �     , for all ≥ B . 

 

 

This implies that the sequence {��} converges to x . Hence proved .                                   ∎ 

 

 

Definition : A sequence is {��} of real numbers is said to be contractive if  there exists a 

constant  0 < � < 1  such that , 

 

                                       |��<� − ��<�| ≤ � |��<� − �� |     for all � ∈ ! . 

 

 

Exercise 8.1: Prove that every contractive sequence is Cauchy and therefore  is convergent . 

 

 

Exercise 8.2: Given � , : ∈ S and 0 < � < 1  , let {��}  be a sequence of real numbers 

defined by �� = K , :� = f  and  

 

                                         ��<� = �1 + � ��� − � ��%�    for all � ≥ 2 . 
 

Show that {��} is Cauchy Sequence and its limit is �f + �K�/�1 − �� .  

 

 

Exercise 8.3 : Prove that the sequence {��} is not a Cauchy sequence , where  

 

                                            �� = 1 + �
� + �

� + ⋯ + �
�       ,for all � ∈ ! . 

 

 

 

                                            ----------------------------------------------- 

 

  


