Schistosoma haematobium SEM- VI, DSE- 3

Sreenita Ghosh
Department of Zoology, B. C. College,
Asansol.

Introduction

TREMATODES

- Flat or fleshly, leaf-like unsegmented body.
- Incomplete alimentary canal.
- Possess suckers with no hooks.
- Sexes are separate in Schistosomes, while the others are hermaphroditic.
- Oviparous

General Characteristics

- Presence of two suckers.
- Has no body cavity, circulatory and respiratory organs.
- Alimentary system- mouth surrounded by an oral sucker, muscular pharynx, oesophagus which bifurcates into 2 blind caeca.(inverted Y shaped)
- Rudimentary nervous system paired ganglion cells.

Classification

Based on Habitat:

- Blood flukes
- Liver flukes
- Intestinal flukes
- Lung flukes

BLOOD FLUKES

- □ Family : Schistosomatidae
- □ Genus : Schistosoma
- Species:
 - 1. S. haematobium
 - S. mansoni
 - S. japonicum
 - S. mekongi
 - 5. S. intercalatum

Schistosomes

- Schistosomiasis (bilharziasis)
- Water-borne disease (Africa, Asia & Latin America).
- Male worm is broader & lateral border is rolled ventrally into a cylindrical shape, producing a long groove – GYNECOPHORIC CANAL, in which females are held.
- Live in venous plexus in body of definitive host

Features distinguishing Schistosomes from other trematodes:

- Unisexual.
- Lack muscular pharynx
- Intestinal caeca reunite after bifurcation to form a single canal.
- Produce non-operculated eggs.
- Cercariae have forked tails and infects by penetrating unbroken skin of definitive host.

History and Distribution

- Bilharzia haematobium.
- Bilharz described about the adult worm.
- Endemic in most parts of Africa, West Asia some parts of India.

EGGS OF SCHISTOSOMES
WAS FOUND IN RENAL
PELVIS OF EGYPTIAN
MUMMY FROM 1,200-1,000
BC.

SCHISTOSOME
ANTIGEN IDENTIFIED
BY ELISA IN EGYPTIAN
MUMMIES OF
PREDYNASTIC PERIOD
(3,100 BC)

PREVALENCE

Morphology

SUCKERS

ADULT WORM

FEMALE 20mm long, 0.25mm thick with cuticular tubercles confined to ends.

GYNECOPHORIC CANAL

MALE 10-15mm long, 1mm thick & covered by finely tuberculated cuticle.

EGG

Ovoid non-operculated

Gravid worm has 20-30 eggs in uterus at a time & realises 300 Eggs/day

With a brownish yellow transparent shell carrying terminal spine at one pole

Life cycle

- Definitive host : Humans
- Intermediate host : freshwater snails
- Infective form : Cercaria larva

Eggs hatch in water reaches vesical and pelvic venous plexus mature, mate, and lay eggs first stage larva grow & is sexually differentiated Motile ciliated MIRACIDIUM in 20 days in intrahepatic portal veins Infects snail enters peripheral venules Cilia shed to become sporocyst sheds tail - schistosomulae Cell proliferation to form germ balls infection by direct skin penetration second generation sporocyst free living in water Cercariae formed by sexual reproduction on maturity, escape from parent

- □ Pierces vesical wall →Enter lumen of urinary bladder →Discharged in urine(end of micturition during midday)
- Cercaria elongated ovoid body with forked tail
- Swarms of cercaria swim in water for about 3 days.
- Once infected, eggs appear in urine 10 to 12 weeks.
- Adult worm could live upto 20–30 years.

Clinical Features

- Classified depending on stages in evolution of infection:
 - During incubation period
 - During oviposition
 - During tissue proliferation & repair

1. Skin penetration & Incubation period

- Local cercarial dermatitis /
 Swimmer's itch transient itching and petechial lesions at site of entry of cercariae.
 - Often in visitors to endemic areas than locals
- Anaphylactic or toxic symptoms – fever, malaise and urticaria.
- Accompanied by leucocytosis, eosinophilia, enlarged tender liver and

2. Oviposition

- Painless terminal hematuria initially microscopic later becomes gross.
- Develops frequency of micturition and burning.
- Cystoscopy hyperplasia and inflammation of bladder mucosa.

Laboratory Diagonosis

Detection of egg

- Urine microscopy
- Bladder mucosal biopsy

Detection of antigen

 Circulating anodic antigen & Circulating cathodic antigen by ELISA

Detection of antibody

- Complement Fixation Test (CFT)
- Immunofluorescence
- Indirect Hemagglutination
- Bentonite flocculation test
- Enzyme linked immunoelectrotransfer blot
- FAST/ELISA

Intradermal skin test(Fairley's test)

 Group specific test gives positive to all Schistosomiasis

Imaging

- X-Ray- bladder and ureteral calcification.
- USG-hydroureter
 & hydronephrosis
- Indirect diagnosis: IVP & Cystoscopy

INTRAVENOUS
UROGRAM showing
scalloping of bladder &
right lower ureter by
schistosomal polypoid
lesions

Treatment and Prophylaxis

- DOC Praziquantel (40mg/kg for 1 day)
- Alternative DOC Metriphonate
- Prophylaxis:
 - Eradication of intermediate molluscan hosts.
 - Prevention of environmental pollution with urine and faeces.
 - Effective treated of infected.
 - Avoid swimming, bathing and washing in infected water.

DDx

hematuria

- Acute nephritis
- □ Renal TB
- UGT cancer
- Salmonella infection
- Drug reactions
- Helminthic Parasitic infections

- □ CBC:
 - Eosinophilia, Anaemia
- Blood culture
- Urine microscopy:
 - gegs of Schistosoma haematobium

Thank You