Digestion and absorption of lipids (Cc4, unit 2)

By Sriparna Ray, Bidhan Chandra College, Asansol

Definition

They have the common property of being
(1) relatively insoluble in water
(2) soluble in nonpolar solvents such as alcohol, ether and chloroform.

Functions

- Storage form of energy
 - Concentrated storage
 - 9.24kcal/g
- Bio membrane
 - Structural components
 - Phospholipids
 - Glycolipids

- Metabolic regulator
 - Steroid hormones
 - Prostaglandins
- Surfactant
 - Diphosphatidylcholine (Lecithine)
- Detergent emulsifier

- Electric insulator of neuron
 - Insulator from external temperature
 - Shape and contour to the

body

- Cushioning to internal organs
- Fat soluble vitamins
- Taste and palatability

Dietary fat Composition

 \Box > More than 95% : TG □Cholesterol, Cholesteryl esters, Phospholipids, and □ Unesterified fatty acids.

Dietary sources of Lipids

Digestion in Mouth

TG $\xrightarrow{\text{Lingual lipase}}$ 1,2 DAG + FFA

Lingual lipase:

□Secreted by dorsal surface of tongue

□ Active at low pH (pH 2.0 – 7-5)

□optimum pH 4.0-4.5

□ Ideal substrate-Short chain TGS

Enzymatic action continues in stomach

□Short chain fatty acids: absorbed directly from the stomach wall

□Enter the portal vein.

Triglyceride degradation

Digestion in Stomach

Gastric Lipase

- Optimum p H 5.4 (4-7)
- Acid stable
- Gastrin → Chief cells
- Requires the presence of Ca++
- Short and medium chain fatty acid (30%)

Fats ingastric emptying : Satiety

□ Fats \rightarrow Enterogastrone ↓ inhibits gastric motility ↓

↓ rate of emptying of stomach
 ↓
 high satiety value.

Significance of Lingual & Gastric Lipases

- Neonates
- Pancreatic insufficiency
 - Cystic fibrosis
 - other pancreatic disorders
- short and medium chain fatty

Emulsification and digestion

- Lipids
 - hydrophobic

- poorly soluble in the aqueous environment
- Lipase, : water soluble
- can only work at the surface of fat globules.
- Digestion is greatly aided by

Emulsification : breaking up of fat globules into much smaller **emulsion droplets**.

Emulsification and digestion

TG digestion :

• occurs at lipid-water interfaces

Rate **α** surface area

• increased by

- churning peristaltic movements of the intestine
- emulsifying action of bile salts
- Emulsification takes place in the duodenum.

Digestion in small intestine

- Major site of fat digestion
- Effective \rightarrow Pancreatic lipase and bile salts.
- Bile salts \rightarrow effective emulsifying agents
- Secretion of pancreatic juice is stimulated by?
- acid gastric /Protein rich content in duodenum
- Secretin/ Cholecystokinin Pancreozymin

GI hormones

Secretin- \uparrow secretion of electrolytes and HCO3⁻ rich fluid components of pancreatic juice

Pancreozymin of CCK –

stimulates the secretion of the pancreatic enzymes

Cholecystokinin of CCK-PZ-

Contraction of the gall bladder

Dilatation of spincture of Oddi

Hepatocrinin-

Released by intestinal mucosa

stimulates more bile formation (poor in bile acid)

Contents of Pancreatic Juice

- □ Pancreatic Lipase- triglycerides
- Phospholipase A2- Phospholipids
- Cholesterol esterase- Cholesteryl esters

Bile Salts

- Required for the proper functioning of the pancreatic lipase enzyme
- Combines lipase + 2 X Colipase.
- Enhances the lipase activity
- Emulsification of fats

Bile Salts

- Synthesized in the liver
- Stored in the gall bladder
- Derivatives of cholesterol
- sterol ring + side chain + glycine / Taurine
- Na & K salts of Glycocholic & Taurocholic acid
- Entero-hepatic circulation

Emulsification by bile salts

interact with the dietary lipid particles and the aqueous duodenal contents stabilizing the lipid particles as smaller preventing them from coalescing

TG degradation by pancreatic lipase

- specific for I⁰ ester linkages
- Cant act on '2

Pancreatic lipase is an enzyme that breaks the bonds between glycerol and the fatty acids at positions 1 and 3, liberating the 2 fatty acids.

TG degradation by pancreatic lipase

Isomerase β- Mono acyl glycerol -----→ α- Mono acyl glycerol Pancreatic lipase α- Mono acyl glycerol -----→ Glycerol + FA

- Primary product
 - β- Mono acyl glycerol (78%)
 - α Mono acyl glycerol (6%)
 - free fatty acids
 - glycerol (14%)

Emulsification and Digestion of TG

Step 1: Emulsification of fat droplets by bile salts

Step 2: Hydrolysis of triglycerides in emulsified fat droplets into fatty acid and monoglycerides Step 3: Dissolving of fatty acids and monoglycerides into micelles to produce "mixed micelles"

Significance of Pancreatic lipase

- High concentration in pancreas.
- severe pancreatic deficiency such
 - cystic fibrosis
 - malabsorption of fats
- Orlistat
 - antiobesity drug
 - inhibits gastric and pancreatic lipases
 - decreasing fat digestion and absorption
 - weight loss.

Cholesteryl ester degradation

- Dietary cholesterol
 - mainly free (Non esterified) form
 - 10-15% is in esterified form cholesteryl esters
- Hydrolase : activity 个 by bile salts

Absorption of Lipids

Glycerol, short chain FA & medium chain FA directly absorbed from the intestinal lumen → portal vein → liver Large Mucosal cell

Long chain fatty acids, free cholesterol and β - acyl glycerol With bile salts form mixed micelles

Micelles

- Spherical
- Clusters of amphipathic lipids
 - hydrophobic groups on the inside
 - hydrophilic groups on the outside of clusters
- Mixed micelles : soluble in the aqueous environment of the intestinal lumen
- Approach the brush border membrane of the enterocytes

hydrophilic group

Micelles

- Micelles constantly break down and re-form,
- MAG & FA :
 - nonpolar
 - diffuse across the plasma membrane of the enterocyte.
 - Some : specific transport proteins

Clinical Significance of Cholesterol Absorption

Ezetimibe

- Blocks a protein mediating cholesterol transport across enterocytes
- Effective at reducing levels of LDL cholesterol
- Clinical trials are in progress

Resynthesis of TAG and CHE

Within the intestinal epithelium

- •1- monoacyglycerols \rightarrow FA + glycerol
- •2-monoacylglycerols \rightarrow TAC

(monoacylglycerol pathway)

- Lysophospholipids \rightarrow phospholipids.
- Cholesterol \rightarrow Cholesteryl esters
- LCFA \rightarrow TGs, PL, CHE.
- SCFA & MCFA \rightarrow portal circulation
- carried by serum albumin to liver.

Formation and Transportation of Chylomicrons

Lipid Malabsorption (Steatorrhea)

- **lipids loss** (including fat soluble vitamins A,D E and K) in the feces.
- Cause
 - pancreatic insufficiency
 - cystic fibrosis
 - chronic diseases of pancreas
 - surgical removal of pancreas
 - Shortened bowel, Celiac diseases, sprue or crohn's disease
 - Bile duct obstruction
- Milk and coconut oil are used therapeutically since they contain medium chain fatty acids.

Secretion of lipids from enterocytes

- Once inside the enterocyte
- monoglycerides and fatty acids \rightarrow TAG.
- TAG + CH & Fat soluble vitamins → chylomicrons.
- Chylomicrons are **lipoproteins**, special particles that are designed for the transport of lipids in the circulation.
- Chylomicrons are released by exocytosis at the basolateral surface of the enterocytes.
- too large to enter typical capillaries.
- enter lacteals
- Chylomicrons then flow into the circulation via lymphatic vessels.

Structure of Chylomicron

- **Gize:** 0**.**1–1 μm
- Average composition
- o TG (84%)
- Cholesterol(2%)
- Ester Cholesterol (4%)
- Phospholipid (8%)
- Apo lipoproteins (2%)

Transport and Utilization of chylomicrons

Clinical significance of Chylomicron synthesis and utilization

- **Defective synthesis- D**eficiency of apo-B 48 protein.
- The triglyceride may accumulate in intestinal cells.
- **Chyluria-** abnormal connection between urinary tract and lymphatic drainage system of the intestines
- forming Chylous fistula
- passage of Milky urine.
- Chylothorax- Small intestine resulting in accumulation of lymph in pleural cavity giving Milky pleural effusion

Physiologically important lipases

Lingual / acid stable lipase	Mouth , stomach	TAGS with medium chain FAs	FFA+DAG
Pancreatic lipase + co-lipase	Small intestine	TAGs with long chain FAs	FFA+2MAG
Intestinal lipase with bile acids	Small intestine	TAGs with medium chain FAs	2FFA+glycerol
PhospholipaseA₂ + bileacids	Small intestine	PLs with unsat. FA at position 2	Unsat FFA lysolecithin
Lipoprotein lipase insulin (+)	Capillarywalls	TAGs in chylomicron or VLDL	FFA+ glycerol
Hormone sensitive lipase	Adipose cell	TAG stored in adipose cells	FFA+ glycerol

Summary oflipid digestion and Absorption

Chylomicrons deliver absorbed TAG to the body's cells. TAG in thylomicrons and other lipoproteins are hydrolyzed by **fipoprotein fipase**, an enzyme that is found in capillary endothelial cells. Monoglycerides and fatty acids released from digestion of TAG then diffuse into cells.