
 

SEMESTER-VI 

PHYSICS-DSE: CLASSICAL DYNAMICS 

Calculus of variation 

Calculus of variation: Variational principle; Euler-Lagrange equations and Hamilton’s 

principle from variational principle, Brachistrochrone problem, minimum surface of 

revolution, motion under gravity, Solution of Hamilton’s equation for a particle in a central 

force field; homogeneity of time and conservation of energy; isotropy of space and conservation 

of angular momentum. 
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1.  Variational Principle- 

From differential calculus, the necessary conditions for maxima or minima of a function 

y(x) at x=a are given by, 

𝒚′(𝒂) = 𝟎 𝒂𝒏𝒅 𝒚′′(𝒂) > 𝟎 𝒐𝒓 < 𝟎 

Here,  𝒚′′(𝒂) > 𝟎 corresponds to a minima while 𝒚′′(𝒂) < 𝟎 corresponds to a maxima. 

 The calculus of variation also deals with a similar problem. It seeks to find a path, y=y(x), 

restricting to one dimension, between two points x1 and x2, such that the line integral over a 

function of this function y(x) is an extremum. The required condition that y(x) must satisfy 

in this respect is known as the Euler’s equation. 

                                                                             The calculus of variations is a field 

of mathematical analysis that uses variations, which are small changes 

in functions and functionals, to find maxima and minima of functionals- mappings from a 

set of functions to the real numbers. Functionals are often expressed as definite 

integrals involving functions and their derivatives. Functions that maximize or minimize 

functionals may be found using the Euler–Lagrange equation of the calculus of variations. 

https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation


 

A simple example of such a problem is to find the curve of shortest length connecting two 

points. If there are no constraints, the solution is a straight line between the points. 

However, if the curve is constrained to lie on a surface in space, then the solution is less 

obvious, and possibly many solutions may exist. Such solutions are known as geodesics.  

 

2. Euler-Lagrange equation from variational principle- 

Consider a general functional 

                                        𝑰 = ∫ 𝑭(𝒚, 𝒚′, 𝒙)𝒅𝒙
𝒃

𝒂
………………………….. (i) 

                                                                      where the values of function y at the end points are 

fixed. We want to find the function y that minimizes or maximizes I (of course y should 

satisfy the boundary condition specified  above, i.e. the values of y(a) and y(b) are specified 

and fixed). This problem reduces to finding a function y that can make the variation in I be 

equal to zero, i.e. 

                                            δI = 0………………………………….……… (ii) 

                                                    We now derive a differential form equivalent to the 

variational form equation (ii). The variation in I can be calculated as 

𝜹𝑰 = 𝜹∫𝑭(𝒚, 𝒚′, 𝒙)𝒅𝒙,

𝒃

𝒂

 

                                                                 = ∫ (
𝝏𝑭

𝝏𝒚
𝜹𝒚 +

𝝏𝑭

𝝏𝒚′ 𝜹𝒚′)𝒅𝒙
𝒃

𝒂
………………. (iii) 

                                                                                                  where δy′ is the variation of y′, 

which can be further written as 

                                                       𝜹𝒚′ = 𝜹(
𝒅𝒚

𝒅𝒙
) =

𝒅(𝜹𝒚)

𝒅𝒙
……………………… (iv) 

Then the second term on the right-hand side of equation (iii) can be written as 

 ∫ (
𝝏𝑭

𝝏𝒚′ 𝜹𝒚′)𝒅𝒙 = ∫ (
𝝏𝑭

𝝏𝒚′

𝒅𝜹𝒚

𝒅𝒙
)𝒅𝒙 = ∫ (

𝝏𝑭

𝝏𝒚′ 𝒅𝜹𝒚) =
𝝏𝑭

𝝏𝒚′ 𝜹𝒚⎸𝒂
𝒃 − ∫ 𝜹𝒚𝒅(

𝝏𝑭

𝝏𝒚′)
𝒃

𝒂
 

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂
………… (v) 

Since we require the values of y at the end points, a and b, be fixed, i.e., δy = 0 at the end 

points, the above equation is written as 

∫ (
𝝏𝑭

𝝏𝒚′ 𝜹𝒚′)𝒅𝒙 = −∫ 𝜹𝒚 𝒅 (
𝝏𝑭

𝝏𝒚′) = −∫ 𝜹𝒚
𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒚′)𝒅𝒙 
𝒃

𝒂

𝒃

𝒂

𝒃

𝒂
……………….... (vi) 

Using this, equation (iii) is written as 

                                      𝜹𝑰 = ∫ 𝜹𝒚[
𝝏𝑭

𝝏𝒚
−

𝒃

𝒂

𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒚′)]𝒅𝒙……………………….. (vii) 

Thus δI = 0 is written as ∫ 𝜹𝒚[
𝝏𝑭

𝝏𝒚
−

𝒃

𝒂

𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒚′)]𝒅𝒙 = 𝟎…………………..…. (viii) 

Noting that equation (viii) must hold for arbitrary δy, the only way that can make this 

possible is 

                                      
𝝏𝑭

𝝏𝒚
−

𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒚′) = 𝟎…………………………………….. (ix) 

Equation (ix) is known as Euler-Lagrange equation, which is a differential equation for 

y(x). The solution to the Euler-Lagrange equation gives the function that can maximize or 

minimize the functional I. 

 

https://en.wikipedia.org/wiki/Geodesic


 

3. Hamilton’s principle and its modified form-  

The Hamilton’s principle postulates that –“The motion of dynamical system from time t1 to 

time t2 is such that the line integral  

∫ 𝑳𝒅𝒕 = 𝑰

𝒕𝟐

𝒕𝟏

 

                                                                       is an extremum i.e. stationary for the correct path 

of the motion”. 

In terms of calculus of variation, the principle states that δI=0 i.e., 

                                     𝜹∫ 𝑳𝒅𝒕 = 𝜹
𝒕𝟐
𝒕𝟏

∫ (𝑻 − 𝑽)𝒅𝒕 = 𝜹𝑰 = 𝟎.
𝒕𝟐
𝒕𝟏

............................. (i) 

The above equation may also be written as, 

 

𝜹 ∫ 𝑳𝒅𝒕 = 𝟎

𝒕𝟐

𝒕𝟏

 𝒊. 𝒆. 𝜹 ∫ 𝑳(𝒒𝒊, 𝒒̇𝒊, 𝒕)𝒅𝒕 = 𝟎

𝒕𝟐

𝒕𝟏

 

But, the relation between Lagrangian L and Hamiltonian H is given by, 

𝑯(𝒑𝒊, 𝒒𝒊, 𝒕) = ∑𝒑𝒊𝒒̇𝒊 − 𝑳(

𝒊

𝒒𝒊, 𝒒̇𝒊, 𝒕) 

                                                        i.e. 𝑳 = ∑ 𝒑𝒊𝒒̇𝒊 − 𝑯𝒊  

 

So, from equation (i), we have, 

                                  𝜹∫ (∑ 𝒑𝒊𝒒̇𝒊 − 𝑯𝒊
𝒕𝟐
𝒕𝟏

)𝒅𝒕 = 𝟎………………………………. (ii) 

                                                                        This is referred as the modified Hamilton’s 

principle. 

4. Hamilton’s equations from variational principle- 

Let q1,q2,q3,…………,qn be the generalized coordinates and p1,p2,p3,……..,pn be the 

generalized momenta of a dynamical system. 

We know that, 

 𝑯(𝒑𝒊, 𝒒𝒊, 𝒕) = ∑𝒑𝒊𝒒̇𝒊 − 𝑳(

𝒊

𝒒𝒊, 𝒒̇𝒊, 𝒕) 

                                        i.e.𝑳(𝒒𝒊, 𝒒̇𝒊, 𝒕) = ∑ 𝒑𝒊𝒒̇𝒊 − 𝑯(𝒑𝒊, 𝒒𝒊, 𝒕)𝒊 …………………….. (i) 

 

Taking δ- variation, 𝜹𝑳 = ∑(𝒑𝒊𝜹𝒒̇𝒊 + 𝒒̇𝒊𝜹𝒑𝒊) − {∑
𝝏𝑯

𝝏𝒑𝒊
𝜹𝒑𝒊 + ∑

𝝏𝑯

𝝏𝒒𝒊
𝜹𝒒𝒊} 

Integrating between the limits t1 and t2, we get 

       ∫ 𝜹𝑳 𝒅𝒕
𝒕𝟐
𝒕𝟏

= ∫ [
𝒕𝟐
𝒕𝟏

∑(𝒑𝒊𝜹𝒒̇𝒊 + 𝒒̇𝒊𝜹𝒑𝒊)]𝒅𝒕 − ∫ [ 
𝒕𝟐
𝒕𝟏

∑
𝝏𝑯

𝝏𝒑𝒊
𝜹𝒑𝒊 + ∑

𝝏𝑯

𝝏𝒒𝒊
𝜹𝒒𝒊]𝒅𝒕………. (ii) 

Now, according to Hamilton’s principle, 𝜹∫ 𝑳𝒅𝒕 = 𝟎
𝒕𝟐
𝒕𝟏

 

So, equation (ii) becomes, 

∫ [
𝒕𝟐
𝒕𝟏

∑(𝒑𝒊𝜹𝒒̇𝒊 + 𝒒̇𝒊𝜹𝒑𝒊)]𝒅𝒕 − ∫ [ 
𝒕𝟐
𝒕𝟏

∑
𝝏𝑯

𝝏𝒑𝒊
𝜹𝒑𝒊 + ∑

𝝏𝑯

𝝏𝒒𝒊
𝜹𝒒𝒊]𝒅𝒕 = 𝟎………………. (iii) 



 

Now, ∫ ∑(𝒑𝒊𝜹𝒒̇𝒊)𝒅𝒕 = ∑∫ 𝒑𝒊
𝒅

𝒅𝒕
(𝜹𝒒𝒊)𝒅𝒕 = ∑{[𝒑𝒊𝜹𝒒𝒊]𝒕𝟏

𝒕𝟐 −
𝒕𝟐
𝒕𝟏

𝒕𝟐
𝒕𝟏

∫
𝒅

𝒅𝒕
(𝒑𝒊)𝜹𝒒𝒊𝒅𝒕}

𝒕𝟐
𝒕𝟏

 

                                                                         = −∫ ∑𝒑𝒊̇ 𝜹𝒒𝒊𝒅𝒕
𝒕𝟐
𝒕𝟏

 (As δqi=0, at end points) 

Putting this value in equation (iii) we get, 

∫[∑{−𝒑𝒊̇ 𝜹𝒒𝒊 + 𝒒𝒊̇ 𝜹𝒑𝒊 −

𝒕𝟐

𝒕𝟏

𝝏𝑯

𝝏𝒑𝒊
𝜹𝒑𝒊 −

𝝏𝑯

𝝏𝒒𝒊
𝜹𝒒𝒊}]𝒅𝒕 = 𝟎 

                             or,∫ {∑(𝒒𝒊̇ −
𝒕𝟐
𝒕𝟏

𝝏𝑯

𝝏𝒑𝒊
)𝜹𝒑𝒊 − (𝒑𝒊̇ +

𝝏𝑯

𝝏𝒒𝒊
)𝜹𝒒𝒊}𝒅𝒕 = 𝟎……………….. (iv) 

If δqi’s and δpi’s are independent of each other, then equation (iv) is satisfied only when the 

coefficients of δqi’s and δpi’s separately vanish, that is, when, 

 

𝝏𝑯

𝝏𝒑𝒊
= 𝒒𝒊̇  

 

                                                      and           
𝝏𝑯

𝝏𝒒𝒊
= −𝒑𝒊̇      (where i= 1, 2, 3,…………,n) 

                                                                                which are Hamilton’s equation. 

5. Brachistrochrone problem ( Shortest time problem)- 

Let a particle in a conservative force field 𝑭⃗⃗  moves initially from rest and moves to point (x1, 

y1). To find the path followed by the particle for which the time of transit between the points 

is a minima, let coordinate system is so oriented that the initial point of rest coincides with 

the origin (0, 0) of the system. 

 

 
 

The time of transit is given by, 

                                                  𝒕𝟏𝟐 = ∫
𝒅𝒔

𝒗

𝟐

𝟏
………………………………..……. (i) 

                                                                   where v is the speed of the particle and ds the 

separation between the two space points. 

                                                                  As the force field is conservative and frictionless, the 

total energy i.e. the sum of kinetic energy (T) and potential energy (V) is constant. 

Taking V=0 at x=0 level, T+V=0 at the origin. At any point (x,y) in its path, 



 

                                        𝑻 =
𝟏

𝟐
𝒎𝒗𝟐 and 𝑽 = −𝑭𝒙 = −𝒎𝒈𝒙  

                                                                                            where g is the acceleration of the 

particle due to the force.  

                                         So, we have, 𝒗 = √𝟐𝒈𝒙……………………………… (ii) 

Now, equation (i) becomes, 

                                 𝒕𝟏𝟐 = ∫
𝒅𝒔

𝒗
= ∫ √(𝟏 + 𝒚′𝟐)/𝟐𝒈𝒙

𝒙𝟏

𝟎
𝒅𝒙

𝟐

𝟏
……………………. (iii) 

The function f may be written as 

                                         𝒇 = √
𝟏+𝒚′𝟐

𝟐𝒈𝒙
 and for t to be minimum, 

 

                                        
𝒅

𝒅𝒙
(

𝝏𝒇

𝝏𝒚′) −
𝝏𝒇

𝝏𝒚
= 𝟎……………………………….….….. (iv) 

 

Here,
𝝏𝒇

𝝏𝒚
= 𝟎 and 

𝝏𝒇

𝝏𝒚′ =
𝒚′

√𝟐𝒈𝒙√(𝟏+𝒚′𝟐)
 

 

Putting this in equation (iv) we get, 

𝒅

𝒅𝒙
(

𝒚′

√𝟐𝒈𝒙√(𝟏 + 𝒚′𝟐)
) = 𝟎 

                                                     or, 
𝒚′

√𝟐𝒈𝒙√(𝟏+𝒚′𝟐)
= 𝑪, 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

                                                  or, 
𝒚′𝟐

𝑪𝟐 = 𝒙(𝟏 + 𝒚𝟐) 

                                                  or, 𝒚′𝟐 (
𝟏

𝑪𝟐 − 𝒙) = 𝒙 

                                                  or, 𝒚′𝟐 =
𝒙

𝒃−𝒙
 where b=1/c2, a constant 

                                                  or, 
𝒅𝒚

𝒅𝒙
= √

𝒙

𝒃−𝒙
 

                                                  or,𝒚 = ∫√
𝒙

𝒃−𝒙
𝒅𝒙 + 𝑪′, 𝑪′is another constant 

             Let 𝒙 = 𝒃𝑺𝒊𝒏𝟐𝜽, then 𝒅𝒙 = 𝟐𝒃𝑺𝒊𝒏𝜽𝑪𝒐𝒔𝜽 𝒅𝜽 

Therefore, 𝒚 = ∫
𝑺𝒊𝒏𝜽

𝑪𝒐𝒔𝜽
𝟐𝒃𝑺𝒊𝒏𝜽𝑪𝒐𝒔𝜽 𝒅𝜽 + 𝑪′ 

                      = 𝒃∫𝟐𝑺𝒊𝒏𝟐𝜽 𝒅𝜽 +𝑪′ = 𝒃∫(𝟏 − 𝑪𝒐𝒔𝟐𝜽)𝒅𝜽 + 𝑪′ = 𝒃 [𝜽 −
𝑺𝒊𝒏𝟐𝜽

𝟐
] +𝑪′ 

                                                                                                           =
𝒃

𝟐
[𝟐𝜽 − 𝑺𝒊𝒏𝟐𝜽] + 𝑪′ 

Then the parametric equations of the curve are, 

𝒙 = 𝒃𝑺𝒊𝒏𝟐𝜽 =
𝒃

𝟐
[𝟏 − 𝑪𝒐𝒔𝟐𝜽] 

                                              and 𝒚 =
𝒃

𝟐
[𝟐𝜽 − 𝑺𝒊𝒏𝟐𝜽] + 𝑪′ 



 

Since the curve passes through (0,0), 𝑪′ = 𝟎 

Therefore,  

𝒙 =
𝒃

𝟐
[𝟏 − 𝑪𝒐𝒔𝟐𝜽] 

                                                 and      𝒚 =
𝒃

𝟐
[𝟐𝜽 − 𝑺𝒊𝒏𝟐𝜽] 

Let 𝟐𝜽 = 𝝓 𝒂𝒏𝒅
𝒃

𝟐
= 𝒂. Then the parametric equations of the curve are, 

𝒙 = 𝒂(𝟏 − 𝑪𝒐𝒔𝝓) 

                                                  and       𝒚 = 𝒂(𝝋 − 𝑺𝒊𝒏𝝓) 

This represents a cycloid. The constant a can be determined because the curve passes 

through the point (x1,y1). 

6. Minimum surface of revolution- 

Let AB be a curve which passes through two fixed points A(x1,y1) and B(x2,y2). Let curve AB 

is revolved about Y-axis to generate a surface. Consider a strip of the surface whose radius 

is x and breadth is PP’=ds. 

 
 

Here, 𝒅𝒔𝟐 = 𝒅𝒙𝟐 + 𝒅𝒚𝟐. 𝒐𝒓, 𝒅𝒔 = √𝟏 + 𝒚′𝟐𝒅𝒙 (where y’=dy/dx) 

Area of the strip is 𝒅𝑺 = 𝟐𝝅𝒙𝒅𝒔 = 𝟐𝝅𝒙√𝟏 + 𝒚′𝟐𝒅𝒙 

 

 
 



 

So, total area of revolution is 𝑺 = 𝟐𝝅∫ 𝒙
𝑩

𝑨
√𝟏 + 𝒚′𝟐𝒅𝒙……………………… (i) 

This area will be extremum if δS=0, for which Euler-Lagrange equation is to satisfied  

                                      i.e. 
𝒅

𝒅𝒙
(

𝝏𝒇

𝝏𝒚′) −
𝝏𝒇

𝝏𝒚
= 𝟎………………………… (ii) 

                                                                       where 𝒇 = 𝒙√𝟏 + 𝒚′𝟐 

Here, 
𝝏𝒇

𝝏𝒚
= 𝟎, (

𝝏𝒇

𝝏𝒚′) =
𝒙𝒚′

√𝟏+𝒚′𝟐
 

Putting these values in equation (ii) we get, 

 

                                     
𝒅

𝒅𝒙
(

𝒙𝒚′

√𝟏+𝒚′𝟐
) = 𝟎. 𝒐𝒓,

𝒙𝒚′

√𝟏+𝒚′𝟐
= 𝒂 ……………………….. (iii) 

                                                                                      where a is constant. 

On squaring equation (iii), we get, 

𝒙𝟐𝒚′𝟐 = 𝒂𝟐 + 𝒂𝟐𝒚′𝟐. 𝒐𝒓, 𝒚′ =
𝒅𝒚

𝒅𝒙
=

𝒂

√𝒙𝟐 − 𝒂𝟐
 

Therefore, 𝒚 = ∫
𝒂

√𝒙𝟐−𝒂𝟐
𝒅𝒙 = 𝒂 𝑪𝒐𝒔𝒉−𝟏 𝒙

𝒂
+ 𝒃…………………………. (iv) 

                                                                     where b is another constant. 

 

 

From equation (iv) we have, 

                                 𝒂 𝑪𝒐𝒔𝒉−𝟏 𝒙

𝒂
=

𝒚−𝒃

𝒂
 𝒐𝒓, 𝒙 = 𝒂 𝑪𝒐𝒔𝒉

𝒚−𝒃

𝒂
…………………….. (v) 

This is the equation of the curve for which the surface of revolution is minimum. Equation 

(v) is the equation of a catenary.  The two constants a and b can be determined by the 

condition that the curve (v) passes through points (x1,y1) and (x2,y2). 

7. Motion under gravity- 

Let a particle of mass m is falling freely under gravity and covers a distance z in time t. The 

kinetic energy and potential energy of the particle in time t are  
𝟏

𝟐
𝒎𝒛̇𝟐 and –𝒎𝒈𝒛 

respectively. 

 



 

 

The Lagrangian of the particle is given by, 𝑳 = 𝑻 − 𝑽 =
𝟏

𝟐
𝒎𝒛̇𝟐 + 𝒎𝒈𝒛 

By Hamilton’s principle we can write, 

𝜹∫(
𝟏

𝟐
𝒎𝒛̇𝟐 + 𝒎𝒈𝒛)𝒅𝒕 = 𝟎 

If 𝒇(𝒛, 𝒛̇, 𝒕) =
𝟏

𝟐
𝒎𝒛̇𝟐 + 𝒎𝒈𝒛, then the path 𝒇(𝒛, 𝒛̇, 𝒕) would be extremum if f satisfies Euler-

Lagrange equation, 

                                                        
𝒅

𝒅𝒕
(
𝝏𝒇

𝝏𝒛̇
) −

𝝏𝒇

𝝏𝒛
= 𝟎 ……………………… (i) 

Here, 
𝝏𝒇

𝝏𝒛̇
= 𝒎𝒛̇ and 

𝝏𝒇

𝝏𝒛
= 𝒎𝒈 

Putting these values in equation (i) we get, 

𝒎𝒛̈ − 𝒎𝒈 = 𝟎 

𝒐𝒓, 𝒛̈ − 𝒈 = 𝟎 

This is the equation of motion of a particle under gravity. 

8. Solution of Hamilton’s equation for a particle in a central force field- 

All central forces are conservative in nature and can be given by, 

𝑭(𝒓) = −
𝝏𝑽

𝝏𝒓
. 

Now, from inverse square law we can write, 

𝑭 = −
𝒌

𝒓𝟐
= −

𝝏𝑽

𝝏𝒓
. 

                                                                   So, 𝑽(𝒓) = −
𝒌

𝒓
 

If m be the mass of a particle moving in the central force field, then the Hamiltonian is 

given by, 

                                   𝑯 = 𝑻 + 𝑽(𝒓) =
𝟏

𝟐
𝒎(𝒓̇𝟐 + 𝒓𝟐𝜽̇𝟐) −

𝒌

𝒓
…………………….. (i) 

The generalized momenta of the particle are, 

𝒑𝒓 = 𝒎𝒗𝒓 = 𝒎𝒓̇ 𝒂𝒏𝒅𝒑𝜽 = 𝒎𝒓𝒗𝜽 = 𝒎𝒓𝟐𝜽̇  

Hence, the generalized velocities are, 

𝒓̇ =
𝒑𝒓

𝒎
 𝒂𝒏𝒅 𝜽̇ =

𝒑𝜽

𝒎𝒓𝟐
  

So, equation (i) becomes, 

𝑯 =
𝒑𝒓

𝟐

𝟐𝒎
+

𝒑𝜽
𝟐

𝟐𝒎𝒓𝟐
−

𝒌

𝒓
 

There are four Hamilton’s equations- two for 𝒒̇ and two for 𝒑̇. 

The equations are, 

𝒓̇ =
𝝏𝑯

𝝏𝒑𝒓
=

𝒑𝒓

𝒎
 

 

𝜽̇ =
𝝏𝑯

𝝏𝒑𝜽
=

𝒑𝜽

𝒎𝒓𝟐
 

                𝒑̇𝒓 = −
𝝏𝑯

𝝏𝒓
=

𝒑𝜽
𝟐

𝒎𝒓𝟑
−

𝒌

𝒓𝟐
 



 

𝒑̇𝜽 = −
𝝏𝑯

𝝏𝜽
= 𝟎 

Since 𝒑𝜽 = 𝒎𝒓𝟐𝜽̇, so the third equation can also be written as, 

𝒎𝒓̈ = 𝒎𝒓𝟐𝜽̇𝟐 −
𝒌

𝒓𝟐
 

                                                              or, 𝒎𝒓̈ − 𝒎𝒓𝟐𝜽̇𝟐 = −
𝒌

𝒓𝟐 

In terms of angular momentum 𝑳 = 𝒎𝒓𝟐𝜽̇, the above equation may be written as, 

 

𝒎𝒓̈ −
𝑳𝟐

𝒎𝒓𝟑
= −

𝒌

𝒓𝟐
 

This is the equation of motion of the particle in central force field. 

9. Homogeneity of time and conservation of energy- 

If the physical properties of a closed system remain unchanged for any arbitrary shift in the 

origin of time then the condition is known as Homogeneity of time.  

                                                                  A closed system is described by its Lagrangian and 

the homogeneity of time dictates that it is not dependent on time explicitly so that we have 
𝝏𝑳

𝝏𝒕
= 𝟎. 

The total time derivative of L is, 

𝒅𝑳

𝒅𝒕
= ∑

𝝏𝑳

𝝏𝒒𝒋

𝝏𝒒𝒋

𝝏𝒕
+ ∑

𝝏𝑳

𝝏𝒒𝒋̇

𝝏𝒒𝒋̇

𝝏𝒕
+

𝝏𝑳

𝝏𝒕
𝒋𝒋

 

The above equation can also be rewritten using Lagrange’s equation as, 

 

𝒅𝑳

𝒅𝒕
= ∑

𝒅

𝒅𝒕
(

𝝏𝑳

𝝏𝒒𝒋̇
) 𝒒𝒋̇ + ∑

𝝏𝑳

𝝏𝒒𝒋̇

𝝏𝒒𝒋̇

𝝏𝒕
𝒋𝒋

  (𝒂𝒔
𝝏𝑳

𝝏𝒕
= 𝟎)  

                                               or, 
𝒅𝑳

𝒅𝒕
= ∑

𝒅

𝒅𝒕
(𝒒𝒋̇

𝝏𝑳

𝝏𝒒𝒋̇
)𝒋  

                                               or, 
𝒅

𝒅𝒕
[∑ 𝒒𝒋̇

𝝏𝑳

𝝏𝒒𝒋̇
− 𝑳] = 𝟎𝒋  

This implies that the function 𝑯 = ∑ 𝒒𝒋̇
𝝏𝑳

𝝏𝒒𝒋̇
− 𝑳𝒋 = Conserved………………… (i) 

During the motion of a mechanical system 𝒏𝒒𝒋 𝒂𝒏𝒅 𝒏𝒒̇𝒋(which specify the state of a system) 

vary with time (Here n is the number of degrees of freedom of the system). However, there 

exist some functions of these quantities whose values remain constant during the motion, 

and depend only on the initial conditions. Such functions are known as integrals of motion. 

The quantities represented by such integrals of motion are said to be conserved. Equation 

(i) represents such an integral of motion. We also know that H i.e. Hamiltonian represents 

the total mechanical energy of the system. 

                                                                     It thus follows that the total mechanical energy of a 

closed system is conserved because of the homogeneity of time. 

10. Isotropy of space and conservation of angular momentum- 

If for any arbitrary rotation about the origin of the reference frame the physical properties 

of a closed system remain unaffected, we say that the space is isotropic. Thus every 



 

direction in space is equivalent to every other direction for the description of the state of 

motion of a closed system. 

                                           Because of this isotropy of space, a closed system when rotated as 

a whole in space in any manner whatsoever, its mechanical properties does not vary. So, the 

Lagrangian of a closed system should not be affected (δL=0) in any infinitesimal rotation 

𝜹𝝓⃗⃗⃗  as a whole. 

Let 𝒓⃗  be the position vector of a particle in respect to the origin O. Let OO’ be the axis of 

rotation. The increase in the magnitude of position vector caused by rotation 𝜹𝝓⃗⃗⃗  about OO’ 

is, |𝜹𝒓⃗ | = 𝒓 𝑺𝒊𝒏𝜽 𝜹𝝓. 

 

 

The rotation 𝜹𝝓⃗⃗⃗  can be treated as a vector of magnitude equal to the angle of rotation 𝜹𝝓 

and of direction 𝒏̂ along the axis of rotation. 

The displacement of the end of the position vector is thus, 

                                             𝜹𝒓⃗ = 𝜹𝝓⃗⃗⃗  × 𝒓⃗  by the right-handed screw rule. 

But, the rotation also causes a change in the direction of the particle velocities 𝒗⃗⃗  in the same 

manner with respect to a fixed frame of reference. 

                                              Therefore, 𝜹𝒗⃗⃗ = 𝜹𝝓⃗⃗⃗  ×  𝒗⃗⃗  

We can write,  

𝜹𝑳 = ∑(
𝝏𝑳

𝝏𝒓⃗ 𝒋
. 𝜹𝒓⃗ 𝒋 +

𝝏𝑳

𝝏𝒗⃗⃗ 𝒋
. 𝜹𝒗⃗⃗ 𝒋)

𝒋

 

                                                                  = ∑ (𝒑⃗⃗ ̇𝒋𝒋 . 𝜹𝝓⃗⃗⃗  ×  𝒓⃗ 𝒋 + 𝒑⃗⃗ 𝒋. 𝜹𝝓⃗⃗⃗  × 𝒗⃗⃗ 𝒋)………………. (i) 

Now, for a rotation of the system as a whole, 𝜹𝝓⃗⃗⃗  is the same for every particle. 

So, equation (i) can be written as, 

   

𝜹𝑳 = 𝜹𝝓⃗⃗⃗ .∑(𝒓⃗ 𝒋 × 𝒑⃗⃗ ̇𝒋 + 𝒗⃗⃗ 𝒋 × 𝒑⃗⃗ 𝒋)

𝒋

 

                                                          = 𝜹𝝓⃗⃗⃗ .
𝒅

𝒅𝒕
∑ (𝒓⃗ 𝒋 × 𝒑⃗⃗ 𝒋) = 𝜹𝝓⃗⃗⃗ .

𝒅𝑳⃗⃗ ′

𝒅𝒕𝒋 …………………….. (ii) 



 

where 𝑳⃗⃗ ′ = ∑ (𝒓⃗ 𝒋 × 𝒑⃗⃗ 𝒋)𝒋 , the total angular momentum of the system with respect to O, a 

point on the axis of rotation. 

                                                 But 𝜹𝝓⃗⃗⃗  is quite arbitrary. So, the condition 𝜹𝑳 = 𝟎 gives, from 

equation (ii), 

𝒅𝑳⃗⃗ ′

𝒅𝒕
= 𝟎 𝒊. 𝒆. 𝑳⃗⃗ ′ = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

So, because of isotropy of space, the total angular momentum of a closed system is 

conserved. 

 

Examples- 

1. Deduce the equation of motion of one dimensional harmonic oscillator using Hamilton’s 

Principle.(KNU-2019) 

Solution-  

The Lagrangian for one dimensional harmonic oscillator can be given by, 

                        𝑳 = 𝑻 − 𝑽 =
𝟏

𝟐
𝒎𝒙̇𝟐 −

𝟏

𝟐
𝒌𝒙𝟐……………………… (i) 

Now, according to Hamilton’s principle or the variational principle 

∫𝑳𝒅𝒕 𝒐𝒓, ∫ 𝒇(𝒙, 𝒙̇, 𝒕)𝒅𝒕 is extremum. 

Euler-Lagrange’s equation is, 

𝒅

𝒅𝒕
(
𝝏𝒇

𝝏𝒙̇
) −

𝝏𝒇

𝝏𝒙
= 𝟎 

Here, 
𝝏𝒇

𝝏𝒙
= −𝒌𝒙 𝒂𝒏𝒅

𝝏𝒇

𝝏𝒙̇
= 𝒎𝒙̇   

Putting these values in equation (i) we get, 

𝒎𝒙̈ + 𝒌𝒙 = 𝟎 

                    This is the equation for one-dimensional harmonic oscillator. 

2. Show that the shortest distance between two points in a plane is straight line. 

Solution- Let A(x1,y1) and B(x2,y2) are two points in X-Y plane. An element of length ds 

of any curve (AP’B) passing through A and B is given by, 

𝒅𝒔𝟐 = 𝒅𝒙𝟐 + 𝒅𝒚𝟐. 𝒐𝒓, 𝒅𝒔 = √𝟏 + 𝒚′𝟐𝒅𝒙 𝒘𝒉𝒆𝒓𝒆 𝒚′ =
𝒅𝒚

𝒅𝒙
 



 

 
 

The total length of the curve from A to B is given by, 

𝑰 = ∫ √𝟏 + 𝒚′𝟐𝒅𝒙
𝑩

𝑨
= ∫ 𝒇𝒅𝒙

𝑩

𝑨
…………………… (ii) 

                                                 where  𝒇 = √𝟏 + 𝒚′𝟐 

The length of the curve I will be minimum, when δI=0. This means that f should satisfy 

the Euler-Lagrange’s equation i.e.  
𝒅

𝒅𝒙
(

𝝏𝒇

𝝏𝒚′) −
𝝏𝒇

𝝏𝒚
= 𝟎………………………. (iii) 

Here, 
𝝏𝒇

𝝏𝒚
= 𝟎 𝒂𝒏𝒅 

𝝏𝒇

𝝏𝒚′
=

𝒚′

√𝟏+𝒚′𝟐
 

Putting these values in equation (iii) we get, 

𝒅

𝒅𝒙
(

𝒚′

√𝟏 + 𝒚′𝟐
) = 𝟎 

                                                          
𝒚′

√𝟏+𝒚′𝟐
= 𝑪,𝒘𝒉𝒆𝒓𝒆 𝑪 𝒊𝒔 𝒂 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

𝒚′𝟐 = 𝑪𝟐(𝟏 + 𝒚′𝟐) 

On simplifying, we get, 𝒚′ =
𝑪

√𝟏−𝒄𝟐
= 𝒂,𝒘𝒉𝒆𝒓𝒆 𝒂 𝒊𝒔 𝒂𝒏𝒐𝒕𝒉𝒆𝒓 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕. 

On integration we get, 

                                        𝒚 = 𝒂𝒙 + 𝒃…………………………. (iv) 

                                                          where b is another constant. 

Equation (iv) is the equation of a straight line. Therefore, the shortest distance between 

any two points in a plane is a straight line.  

Exercise- 

1. State the Hamilton’s principle for a conservative system. Write down its modified form. 

2. State and prove the Brachistochrone problem. (KNU-2019) 

3. Show that the modified Hamilton’s principle leads to the Hamilton’s equation of motion. 

4.  Derive Euler-Lagrange equation from technique of calculus of variation. (KNU-2019) 

5. What do you mean by isotropy of space? Show that isotropy of space leads to conservation of 

angular momentum of a system. (KNU-2019) 



 

6. What do you mean by homogeneity of time? Show that homogeneity of time leads to the 

conservation of mechanical energy of a system.  

7. A curve C joining the two pints (x1,y1) and (x2,y2) is revolved about the Y-axis to form a surface 

of revolution. Determine the shape of the curve for which the area of the surface of revolution 

generated is minimum. 

8. Derive the Hamilton’s equation for a particle moving in a central force field. 

9. Using Hamilton’s canonical equations, derive the equation of motion of a particle moving in a 

force field in which the potential is given by V=-k/r, where k is positive. 

10. Prove that the shortest distance between the points on the surface of a sphere is a straight line 

joining them. 

11. Apply variational principle to show that the path of projectile is parabolic. 

12. Show that for a spherical surface, the geodesics are the great circles. 

13. If f1 and f2 are two function of y, y’ and x, then prove the following relations- 

a) 𝜹(𝒇𝟏 + 𝒇𝟐) = 𝜹𝒇𝟏 + 𝜹𝒇𝟐 

b) 𝜹(𝒇𝟏𝒇𝟐) = 𝒇𝟏𝜹𝒇𝟐 + 𝒇𝟐𝜹𝒇𝟏 
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