

Coordination Chemistry-II Magnetochemistry: Dr. Tapan Kumar Si

1) Dia-, para-, ferro- and anti-ferro magnetic

properties

- 2) Orbital and Spin magnetic moment
- 3) Spin only moments of dⁿ ions
- 4) Superexchange and antiferromagnetic ineractions

Dia-, para-, ferro and anti-ferromagnetic properties of Coordination compounds

In terms of magnetism, there are two classes of compounds distinguished by their behaviour in a magnetic field:

- *a) Diamagnetic* –compounds that are *repelled from* the strong part of an external magnetic field;
- **b) Paramagnetic** –compounds that are *attracted into* the strong part of a magnetic field and unpaired electron/s must present.
- c) Ferromagnetism : It is a special case of paramagnetism. In this case the overall magnetic susceptibility of compound increases by interacting their individual paramagnetic center depending on temperature. This type of substance are termed as *ferromagnetic substances* (metallic phases such as Fe, Co, Ni, Tb, Dy, and certain oxides such as CrO₂.)
- *d) Anti -ferromagnetism :* It is also a special case of paramagnetism. In this case the overall magnetic susceptibility of compound decreases through coupling of neighboring paramagnetic center depending on temperature. This type of substance are termed as *anti-ferromagnetic substances such as MnO, CoO, NiO, FeF*₂, and MnF₂
 - B. C. College/VI Semester (H)/ Inorg. Chem./ Lecture-3/TKS/ March-2020

Relation of Temperature with Magnetic Susceptibility

According to Curie-Wiess law the

magnetic susceptibility (**X**) of compound is inversely proportional with temperature like **curve A (**Fig.1)

But for **ferromagnetic** substances, the magnetic susceptibility sharply **increases** after certain temperature **(Curve B)**.

This particular temperature is known as Curie point or **Curie Temperature,(T_c).**

On the other hand, for **anti-ferromagnetic substances**, magnetic susceptibility sharply decreases after certain temperature (**Curve C**) and this particular temperature is known as **Neel Temperature** (T_n) .

Orbital and spin magnetic moment, spin only moments of dⁿ ions

Paramagnetism arises whenever an atom, ion or molecule possesses *one or more unpaired electrons*. It is not restricted to transition metal ions, and even non-metallic compounds can be paramagnetic; dioxygen is a simple.

<u>The electrons in orbitals, have both orbital motion and spin motion; both</u> <u>contribute to the (para) magnetic moment</u>. Quantum theory associates quantum numbers with both these motions. The spin and orbital motion of an electron in an orbital involve quantum numbers for both **spin momentum (S)**, which is actually related to the number of unpaired electrons (*n*) as S = n/2, and the **orbital angular momentum (L)**.

The **magnetic moment** (μ) which is expressed in units of Bohr magnetons, *B* is a measure of the magnetism, and is defined by an expression involving both quantum numbers.

Spin only moments of dⁿ ions

Firstly, for <u>first-row</u> transition metal ions, the effect of L on (μ) is small, so a fairly valid approximation can be reached by neglecting the L component, and then our expression reduces to the **so-called** 'spinonly'(μ_s) where the only quantum number remaining is S.

 $\mu_{s} = [4S(S + 1)]^{1/2}$ (2)

Now, we may readily replace this quantum number by using the S = n/2 relationship, the substitution then leading to the 'spin-only' formula for the magnetic moment (2).

 $\mu_s = [n(n + 2)]^{1/2}$(3)

Using this 'spin-only' Equation (3), the value of μ_s can be readily calculated and predictions compared with actual experimental values (Table 1).

Comparisons of predicted and actual experimental magnetic moments (in units of *B*) for octahedral transition metal complexes

Table-1

SI.No.	Number of unpaired electrons (n)	Calculated Spin Only magnetic moment (µ _s)	Experimental magnetic Moment(µ)	Typical metal ions with d ⁿ electrons
1	0	0	0	Co ³⁺ low spin
2	1	1.73	1.70	Ti ³⁺ , Cu ²⁺
3	2	2.83	2.75-2.85	V ³⁺ , Ni ²⁺
4	3	3.88	3.80–3.90	V ²⁺ , Cr ³⁺ , Mn ⁴⁺
5	4	4.90	4.75–5.00	high-spin Cr ²⁺ & Co ³⁺
6	5	5.92	5.65–6.10	high-spin Mn ²⁺

The techniques that effectively distinguish between high and low spin complexes

• For example, Co(II) is a d⁷ system, which will have **three unpaired electrons** $(t_{2g}^{5} e_{g}^{2})$ if high spin and **one unpaired electron** if low spin (t_{2g}^{6}, e_{g}^{1}) with calculated magnetic moments of **3.88** and **1.73** *B* respectively.

If a particular complex has as experimental magnetic moment of **3.83** *B*, then it must, by comparison with the two options, be **high spin**.

• The technique can very effectively distinguish between high and low spin states. For Co(III) (d⁶), for example, $[Co(NH_3)_6]^{3+}$ (low spin, n = 0) has an experimental magnetic moment close to zero, whereas $[CoF_6]^{3-}$ (high spin, n = 4) has an experimental magnetic moment of nearly 5 *B*, readily differentiated. The simple

Anti-ferromagnetic coupling

A simple qualitative model can explain anti-ferromagnetic and ferromagnetic superexchange between two spin centers that involves the valence orbitals of bridging ligands.

Key to this model is the assumption of a partial spin pairing between the unpaired electron of a "magnetic orbital," usually a d-orbital of a magnetic transition metal ion, and the electrons of the fully occupied ligand orbital that overlaps with the metal d-orbital.

For example, If the ligand orbital is a p-orbital, then it overlaps with symmetry-equivalent d-orbitals of both metal sites, this partial spin pairing will result in an anti-ferromagnetic orientation of the two unpaired electrons localized on the two metal ions. Here, both s and p binding modes can cause the same result.

Ferromagnetic coupling

- Ferromagnetic coupling, on the other hand, requires that no overlap exists between the involved magnetic orbitals of the M and M' sites. This then leads to a parallel spin orientation of the two unpaired electrons according to Hund's rule.
- To this end, the magnetic orbitals of the metal centers need to be orthogonal, or the coupling involves two orthogonal orbitals on the same ligand donor position, for example, a p_x- and a p_y orbital (Fig. 2).

If several exchange pathways exist in polynuclear coordination complexes, ferromagnetic and antiferromagnetic pathways can compete for a given spin dimer, usually resulting in a dominant antiferromagnetic exchange.

Coupling of paramagnetic metal centers with single-occupied d-orbitals bridged by a monoatomic ligand

Fig.2 (a)Overlap scenarios leading to antiferromagnetic exchange;(b)Overlap scenarios resulting in orthogonal singly occupied dorbitals, that is, ferromagnetic coupling