
 ALGORITHMS and FLOWCHARTS

Mathematical Methods-II Lab, Programming in C language

This is very important to know the concepts of algorithm and flowchart before writing programs in any

language. If you make your logic clear to solve any problem with the use of algorithm and flowchart, then it is

very easier to write in any computer language. So in this module I am just trying to make your concept clear.

The Video of this class is available in our college website under E-content.

Dr. Saumen Charaborty

To solve any problem through computer we have to take help of computer program. Computer programs are

collections of instructions that tell a computer how to interact with the user, interact with the computer hardware and

process data and finally solve the said problem.

The total process can be summaries as follows,

Algorithm:

The word ‘Algorithm’ has originated from the word ‘algorism’, which refers to the ‘art of computing’. An

algorithm, is defined as a “well-ordered collection of unambiguous and effectively computable operations, that

when executed, produces a result and halts in a finite amount of time.” In other word, an algorithm is a step-by-step

procedure to solve a given problem.

Characteristics of an Algorithm
 Well-ordered: the steps are in a clear order

 Unambiguous: the operations described are understood by a computing agent without

further simplification

 Effectively computable: the computing agent can actually carry out the operation

 Finiteness: must terminate after a finite number of steps

 Completeness: must be general so that it can solve any problem of a particular type for which it is designed

Efficiency of an algorithm

 How fast the algorithm solves the problem.

 How accurate result the algorithm can compute.

 Small error in the input data should not produce large errors in the output data.

Problem Formulation Algorithm and corresponding Flowchart

Writing in language (obviously understandable

by the user i.e in High level language)

Translator (conversion it into low level

language)

Computer process Solved Results as output

Flowcharts:

Flowchart is a graphical tool that diagrammatically depicts the steps and structure of an algorithm or program. A

flowchart is a diagram made up of boxes, diamonds and other shapes, connected by arrows - each shape represents a

step in the process, and the arrows show the order in which they occur. Flowcharting combines symbols and flow

lines, to show figuratively the operation of an algorithm.

Flowcharting Symbols

There are 6 basic symbols commonly used in flowcharting of assembly language programs: Terminal, Process,

input/output, Decision, Connector and Predefined Process. This is not a complete list of all the possible flowcharting

symbols, it is the ones used most often in the structure of Assembly language programming.

Symbol Name Function

Terminal Indicates the starting or ending of the

program, process, or interrupt program.

input/output Used for any Input / Output (I/O)

operation. Indicates that the computer is to

obtain data or output results

 Process Indicates any type of internal operation

inside the Processor or Memory

 Decision Used to ask a question that can be

answered in a binary format (Yes/No,

True/False)

 Connector Allows the flowchart to be drawn without

intersecting lines or without a reverse

flow.

 Predefined

Process

Used to invoke a subroutine or an

interrupt program.

 Flow Lines Shows direction of flow.

The Structure of a Flowchart
A flowchart of a program can be drawn by making any kind of connections but this may lead to difficulties in

creating and maintaining large programs. From practical point of view, a flowchart should be drawn in an organized

manner so that it can be easily read, understood and tested, thereby increasing the reliability of the program and user

productivity. The method of writing a program or flowchart in this manner is known as structured programming. In

1966, computer scientists Corrado Böhm and Giuseppe Jacopini demonstrated that all programs could be written

using three control structures: Sequence, Selection, and Repetition.

(i) Sequential Structure:

X=A+B

START

 END

READ A,B,C

PRINT A.B

IS

X<Y?

NO

YES

X

In the sequential structure the control flows from one step to next step. Here, one statement is executed after another

and it will stop after the completion of all the steps. The flowchart is as follows;

 Sequential Structure

(ii) Conditional Structure:

The selection structure is the construct where statements can executed or skipped depending on whether a condition

evaluates to TRUE or FALSE. If the condition is true then one path is taken otherwise it takes the other path. This is

shown as follows;

Conditional Structure
(iii) LOOP Structure:

This is also known as repetitive structure. Any repetitive structure mainly consists of a loop or repetition. Actually,

in this structure one or few instruction statements can be executed repeatedly until a condition evaluates to TRUE or

FALSE. It is of two types. One is DO WHILE and another is DO UNTIL.

 START

INPUT

TASK 1

TASK 2

TASK n

OUTPUT

END

Is

Condition

true?

TASK A TASK B

 DO WHILE

DO UNTIL

Example 1: Convert temperature from centigrade to Fahrenheit. (Hints:To convert Centigrade to Fahrenheit,

multiply by 1.8 and add 32 degrees.)

Algorithm: Step 1 : start

Setp 2 : read temperature in centrigrade

Step 3 : caluculate Fahrenheit = 32 + (centigrade * (1.8));

Step 4 : display centigrade and Fahrenheit

Step 5 : stop

Flow chart:

Condition

TASK

FALSE

TRUE

Condition

TASK

FALSE

TRUE

START

Read C

F = 32+(C*1,8)

Display C, F

 END

Example 2: Write down an algorithm and draw a flowchart to find and print the largest of three numbers.

Algorithm: Step 1: Input N1,N2,N3

 Step 2: Max = N1

 Step 3: If N2>Max

 then Max = N2

 endif

 Step 4: If N3>Max

 then Max = N3

 endif

 Step 5: Print “The latgest number is:”,Max

Flowchart:

Example 3: Write an algorithm and draw a flowchart to calculate the factorial of a number (N). Verify your result

by a trace table by assuming N = 5. (Hint: The factorial of N is the product of numbers from 1 to N)

Algorithm: Step 1: Input N

 Step 2: Factor = 1

 Step 3: Counter = 1

 Step 4: While(Counter N)

Repeat steps 4 through 6

 Step 5: Factor = Factor * Counter

 START

Input

N1, N2, N3

Max = N1

END

Max = N2

is

N2>Max?

Yes

Max = N3

is

N3>Max?

Yes

No

No

Print

“Largest Number is”, Max

Step 6: Counter = Counter + 1

Step 7: Print (N, Factor)

Flowchart:

Extra Examples:

Example E.1:To find the roots of the quadratic equation. (Hints: Nature of roots of quadratic equation can be

known from the quadrant = b
2
-4ac, If b

2
-4ac >0 then roots are real and unequal, If b

2
-4ac =0 then roots are real

and equal, If b
2
-4ac <0 then roots are imaginary)

Algorithm: Step 1: start

Step 2: read the a,b,c value

Step 3: if (b*b-4ac)>0 then

 Root 1= (-b+ pow((b*b-4*a*c),0.5))/2*a

Root 2= (-b-pow((b*b-4*a*c),0.5))/2*a

Step 4: if (b*b-4ac)=0 then

 Root1 = Root2 = -b/(2*a)

Step 5: Otherwise Print Imaginary roots. Goto step 7.

Step 6: print roots

Step 7: stop

 Trace Table:

N Factor Counter Decision Print

5 1 1 Y

 1 2 Y

 2 3 Y

 6 4 Y

 24 5 Y

 120 6 N 120

Y

N

START

Print Factor

Factor = 1

is

Counter N

Count = Count +1

Counter = 1

Factor = Factor * Counter

STOP

Input

N

Flowchart:

Example E.2: Write a algorithm and flowchart to check a given number is prime or not. (Hints: Prime number is a

number which is exactly divisible by one and itself only, Ex: 2, 3,5,7,………;)
Algorithm: Step 1: Start

Step 2: Read n

Step 3: m=integer(√𝑛), k=2

Step 4: Dividing n by k

 Find the remainder r.

Step 5: If r=0:output is not primed, goto Step 10

Step 6: k=k+1

 Step 7: k>m: Exit from loop, goto Step 9

Step 8: Repeat Steps 4 to7

Step 9: Output: n is prime

Step 10: End

 START

 Read a,b,c

 If d > 0

 R1 = ((-b+D) / (2*a))

R2 = ((-b-D) /(2*a))

 Output

 R1, R2

 Stop

If d== 0

R1=-b / (2 * a)

R2= -b / (2 * a)

Print imaginary

roots

Yes

No No

No

Yes

d = pow(b*b-4*a*c),0.5

Flow chart:

Example E.3: To print prime numbers from 1 to N. (Modification of above problem)

Algorithm: Step 1: Start

Step 2: Read N

Step4: i=1

Step5: While (i<=N)

Repeat Step 6 to Step 13

Step 6: m=integer(√𝑖), k=2

Step 7: Dividing N by k

 Find the remainder r.

Step 8: If r=0 (means not primed), goto Step 13

Step 9: k=k+1

 Step 10: if k>m: Exit from loop, goto Step 12

Step 11: Repeat Steps 4 to7

Step 12: Print i

Step 13: i=i+1

Step 14: End

 START

 Read N

 r=0?

k=k+1

 Output

“PRIME”

 END

Yes

No

No

Yes

m=int(srt(N)), k=2

q=int(n/k), r=n-q*k

If k>m?

Print

“NOT PRIME”

(You can also modify the above problem where you print the not primed numbers instead of prime numbers)

Problem 1: Write an algorithm and draw a flowchart to calculate ∑ 𝑥210𝑥=1 .

Problem 2: Write an algorithm and draw a flowchart to calculate the area of a triangle having the sides a,

b, c repectively. (Hints: At first check triangle is possible or not)

Problem 3: Write an algorithm and draw a flowchart to multiply two integer without using multiplication

operator.

	START
	Input
	Max = N1

	END
	“Largest Number is”, Max

	Y
	N
	START
	is
	Counter (N
	STOP
	Input

