
NPTEL – Physics – Advanced Statistical Mechanics 
 

Joint initiative of IITs and IISc – Funded by MHRD                                       Page 1 of 19      

Chapter 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical Mechanics:A brief overview 
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Lecture-I 
 

1. Introduction: 
 

Statistical mechanics describes the thermodynamic behaviour of macroscopic systems 

from the laws which govern the behaviour of the constituent elements at the 

microscopic level. The microscopic elements can be atoms, molecules, dipole moments 

or magnetic moments, etc. A macroscopic system, generally, is composed of a large 

number of these elements (of the order of Avogadro number 23106.022AN  per 

mole). Each element may have a large number of internal degrees of freedom 

associated with different types of motion such as translation, rotation, vibration etc. The 

constituent elements may interact with the external field applied to the system. There 

can also be very complex interaction among the constituent elements. The macroscopic 

properties of a system is thus determined in the thermodynamic limit by the properties 

of the constituent molecules, their interaction with external field as well as interaction 

among themselves.  

 

[Thermodynamic limit: For a system of N  elements of volume V  and density  , 

the thermodynamic limit is defined as Nlim , Vlim  keeping VN/=  

finite. In this limit, the extensive properties of the system become directly proportional 

to the size of the system ( N orV ), while the intensive properties become independent 

of the size of the system.]  

 

In the formalism of statistical mechanics, a macroscopic property of a system is 

obtained by taking a “statistical average” (or “ensemble average”) of the property over 

all possible “microstates” of the system. A microstate of a system is defined by 

specifying the states of all of its constituent elements. 

 

Thermodynamic equilibrium of a system can be achieved in different ways depending 

upon the interaction of the system with the rest of the universe (heat bath, pressure bath, 

etc). Different external conditions leading to thermodynamic equilibrium of a system 

give rise to different ensembles. Once microstates and ensembles are specified, 

macroscopic quantities can be obtained by taking appropriate statistical averages 

corresponding to a given ensemble.  
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2. Specification of macrostates and microstates: 
 

Macrostate:The macroscopic state of a thermodynamic system at equilibrium is 

specified by the values of a set of measurable thermodynamic parameters. For example, 

the macrostate of a fluid system can be specified by pressure, temperature and volume,

),,( TVP . For an isolated system for which there is no exchange of energy or mass with 

the surroundings, the macrostate is specified by the internal energy E , number of 

particles N  and volumeV ; ),,( VNE . In case of a closed system which exchanges 

only energy with the surroundings (and no particle) and is in thermodynamic 

equilibrium with a heat bath at temperatureT , the macrostate is given by ),,( TVN . For 

an open system, exchange of both energy and particle with the surroundings can take 

place. For such systems, at equilibrium with a heat bath at temperature T  and a 

pressure bath at pressure P  (or a particle bath of chemical potential ), the macrostate 

is specified by ),,( TPN  (or ),,( TV ).  

 

The equilibrium of an isolated system corresponds to maximum entropy ),,( VNES , for 

a closed system it corresponds to minimum Helmholtz free energy ),,( TVNF , and for 

an open system the equilibrium corresponds to minimum of Gibb's free energy 

),,( TPNG  (or minimum of the grand potential ).,( TV ). 

 

Microstate:A microstate of a system is obtained by specifying the states of all of its 

constituent elements. However, it depends on the nature of the constituent elements (or 

particles) of the system. Specification of microstates are made differently for classical 

and quantum particles. 
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Microstates of classical particles: In order to specify the microstates of a system of 

classical particles, one needs to specify the position q  and the conjugate momentum 

p  ofeach and every constituent particle of the system. In a classical system, the time 

evolution of q  and p  is governed by the classical Hamiltonian ),( qpH  and 

Hamilton's equation of motion  
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For a system of N  particles in 3-dimension. The state of a single particle at any time is 

then given by the pair of conjugate variables ,),( ii pq a point in the phase space. Each 

single particle then constitutes a 6 -dimensional phase space ( 3 -coordinate and 3

-momentum). For N  particles, the state of the system is then completely and uniquely 

defined by N3  canonical coordinates Nqqq 321 ,,,   and N3  canonical momenta

Nppp 321 ,,,  . These N6  variables constitute a N6 -dimensional  -space or phase 

space of the system and each point of the phase space represents a microstate of the 

system. The locus of all the points in  -space satisfying the condition Eqp =),(H , 

total energy of the system, defines the energy surface. 

 

 

 
 

 

 

(a) (b) 

 

Figure 1.1:  ( a ) Accessible region of phase space for a free particle of mass m  and energy E  in a one dimensional 

box of length L . ( b ) Region of phase space for a one dimensional harmonic oscillator with energy E , mass m  and 

spring constant k . 
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Example: Consider a free particle of mass m  inside a one dimensional box of length

L , such that Lq 0 , with energy between E and EE  . The macroscopic state of 

the system is defined by ),,( LNE with 1=N . The microstates are specified in certain 

region of phase space. Since the energy of the particle is mpE /2= 2 , the momentum 

will be mEp 2=   and the position q  is within 0 and L . However, there is a small 

width in energy E , so the particles are confined in small strips of width 

EEmp  /2=  as shown in Fig.1.1 ( a ). Note that if 0=E , the accessible region of 

phase space representing the system would be one dimensional in a two dimensional 

phase space. In order to avoid this artifact a small width in E  is considered which does 

not affect the final results in the thermodynamic limit. In Fig.1.1  ( b ), the phase space 

region of a one dimensional harmonic oscillator with mass m , spring constant k  and 

energy between E  and EE   is shown. The Hamiltonian of the particle is: 

/2/2= 22 kqmp H  and for a given energy E , the accessible region is an ellipse:

1=)//(2)/(2 22 kEqmEp  . With the energy between E and EE  , the accessible 

region is an elliptical shell of area Ekm  /2 . 

 

Microstates of quantum particles: For a quantum particle, the state is characterized 

by the wave function ),,,( 321 qqq . Generally, the wave function is written in terms 

of a complete orthonormal basis of eigenfunctions of the Hamiltonian operator of the 

system. Thus, the wave function may be written as  

 nnnnn

n

Ec  =ˆ,= H  

where nE  is the eigenvalue corresponding to the state n . The eigenstates n , 

characterized by a set of quantum numbers n  provides a way to count the microscopic 

states of the system. 

 

Example: Consider a localized magnetic ion of spin 1/2  and magnetic moment   in 

thermal equilibrium at temperature T . The particle has two eigenstates, (1,0)  and 

(0,1)  associated with spin up )(  and down spin )(  respectively. In the presence of 

an external magnetic field H


, the energy is given by  
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Thus, the system with macrostate ),,( THN  with 1=N  has two microstates with 

energy H  and H  corresponding to up spin (parallel to H


) and down spin 

(antiparallel to H


). If there are two such magnetic ions in the system, it will have four 

microstates:   with energy H2 ,  &  with zero energy and   with 

energy H2 . For a system of N  spins of spin-1/2 , there are total N2  microstates 

and specification of the spin-states of all the N  spins will give one possible microstate 

of the system. 
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Lecture-II 
 

3. Statistical ensembles: 
 

An ensemble is a collection of a large number of replicas (or mental copies) of the 

microstates of the system under the same macroscopic condition or having the same 

macrostate. However, the microstates of the members of an ensemble can be arbitrarily 

different. Thus, for a given macroscopic condition, a system of an ensemble is 

represented by a point in the phase space. The ensemble of a macroscopic system of 

given macrostate then corresponds to a large number of points in the phase space. 

During time evolution of a macroscopic system in a fixed macrostate, the microstate is 

supposed to pass through all these phase points. 

 

Depending on the interaction of a system with the surroundings (or universe), a 

thermodynamic system is classified as isolated, closed or open system. Similarly, 

statistical ensembles are also classified into three different types. The classification of 

ensembles again depends on the type of interaction of the system with the surroundings 

which can either be by exchange of energy only or exchange of both energy and matter 

(particles or mass). In an isolated system, neither energy nor matter is exchanged and 

the corresponding ensemble is known as microcanonical ensemble. A closed system 

exchanging only energy (not matter) with its surroundings is described by canonical 

ensemble. Both energy and matter are exchanged between the system and the 

surroundings in an open system and the corresponding ensemble is called a grand 

canonical ensemble. 

 

4. Statistical equilibrium: 
 

Consider an isolated system with the macrostate ),,( VNE . A point in the phase space 

corresponds to a microstate of such a system and its internal dynamics is described by 

the corresponding phase trajectory. The density of phase points ),( qp  is the number 

of microstates per unit volume of the phase space and it is the probability to find a state 

around a phase point ),( qp .  

 

By Liouville's theorem, in the absence of any source and sink in the phase space, the 

total time derivative in the time evolution of the phase point density ),( qp  is given 

by  

 0=},{= H




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is the Poisson bracket of the density function   and the Hamiltonian H  of the 

system.  
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The ensemble is considered to be in statistical equilibrium if ),( qp  has no explicit 

dependence on time at all points in the phase space, i.e.,  

 0.=
t


 

Under the condition of equilibrium, therefore,  , = 0H . It will be satisfied if   is 

an explicit function of the Hamiltonian ),( pqH  or   is a constant, independent of p  

and q . That is  

 .=),( constantqp  
 

The condition of statistical equilibrium then requires no explicit time dependence 

of the phase point density ),( qp  as well as uniform distribution of ),( qp  

over the relevant region of phase space. The value of ),( qp  will, of course, be 

zero outside the relevant region of phase space. Physically the choice corresponds to an 

ensemble of systems which at all times are uniformly distributed over all possible 

microstates and the resulting ensemble is referred to as the microcanonical ensemble. 

However, in canonical ensemble it can be shown that Tkpqpq B)/,([exp),( H ]. 

 

5. Postulates of statistical mechanics 
The principles of statistical mechanics and their applications are based on the following 

two postulates. 

 

Equal a priori probability:For a given macrostate ,),,( VNE  specified by the 

number of particles N  in the system of volume V  and at energy ,E  there is usually 

a large number of possible microstates of the system. In case of classical 

non-interacting system, the total energy E  can be distributed among the N  particles 

in a large number of different ways and each of these different ways corresponds to a 

microstate. In the fixed energy ensemble, the density ),( pq  of the representative 

points in the phase space corresponding to these microstates is constant or the phase 

points are uniformly distributed. Thus, any member of the ensemble is equally likely to 

be in any of the various possible microstates. In case of a quantum system, the various 

different microstates are identified as the independent solutions ),,,( 21 Nrrr   of the 

Schrödinger equation of the system, corresponding to an eigenvalue E . At any time t

, the system is  equally likely to be in any one of these microstates. This is generally 

referred as the postulate of  equal a priori probability for all microstates of a given 

macrostate of the system. 
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Principle of ergodicity: The microstates of a macroscopic system are specified by a set 

of points in the N6 -dimensional phase space. At any time t , the system is equally 

likely to be in any one of the large number of microstates corresponding to a given 

macrostate, say ),,( VNE  as for an isolated system. With time, the system passes from 

one microstate to another. After a sufficiently long time, the system passes through all 

its possible microstates. In the language of statistical mechanics, the system is 

considered to be in equilibrium if it samples all the microstates with equal a priori 

probability. The equilibrium value of the observable X  can be obtained by the 

statistical or ensemble average  

 .
),(

),(),(
=

33

33

pqddqp

pqddqpqpX
X

NN

NN








  

On the other hand, the mean value of an observable (or a property) is given by its 

time-averaged value:  

 .)(
1

lim=
0

dttX
T

X
T

T




 

The ergodicity principle suggests that statistical average X  and the mean value X  

are equivalent:  XX . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NPTEL – Physics – Advanced Statistical Mechanics 
 

Joint initiative of IITs and IISc – Funded by MHRD                                       Page 9 of 19      

Lecture-III 

 

6. Thermodynamics in different ensembles: 
 

6.1  Microcanonical ensemble (E,N,V):In this ensemble, the macrostate is 

defined by the total energy E , the number of particles N  and the volume V . 

However, for calculation purpose, a small range of energy E  to EE   (with 

0E ) is considered instead of a sharply defined energy value E . The systems of the 

ensemble may be in any one of a large number of microstates between E  and EE 
. In the phase space, the representative points will lie within a hypershell defined by the 

condition  

 .),( EEqpE H  

At statistical equilibrium, all representative points are uniformly distributed and 

constantpq =),(  between E  and EE   otherwise zero. As per equal a priori 

probability, any accessible state is equally probable and the number of accessible 

microstates   is proportional to the phase space volume enclosed within the 

hypershell and it is given by  

 pqdd
h

VNE NN
EE

EN

33

3

1
=),,( 






 

for a system of N  particles and of total energy E . If the particles are 

indistinguishable, the number of microstates   should be divided by !N  as the 

Gibb's correction. However, if the energy states are discrete, the particles are 

distributed among the different energy levels as, in  particles in the energy level i  

and satisfies the following conditions  

 ,== ii

i

i

i

nEandnN   

The total number of possible distributions or microstates of N  such particles is then 

given by  

 .
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The thermodynamic properties can be obtained by associating entropy S  of the 

system to the number of accessible microstates  . The statistical definition of entropy 

by Boltzmann is given by  

 ln=),,( BkVNES  

where Bk  is the Boltzmann constant, 23101.38   JK 1 . In a natural process the 

equilibrium corresponds to maximum   or equivalently maximum entropy S  as is 

stated in the second law of thermodynamics. It is to be noted that, as 0T , the system 

is going to be in its ground state and the value of   is going to be 1. Consequently, 

the entropy 0S which is the third law of thermodynamics. If a thermodynamic 

potential like entropy S  is known in terms of the number of microstates, the 

thermodynamic properties of the system can be obtained by taking suitable derivative 

of S  with respect to the relevant parametersas given below. 

 

Fluid System:     

 Entropy: ln=),,( BkVNES  

 

 

   

Temperature  

,

1
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N V
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T E
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Pressure  

,

=
N E

S
P T

V

 
 
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Chemical potential  

,

=
E V

S
T

N


 
  

 
 

 

6.2 Canonical ensemble (N,V,T):In the micro-canonical ensemble, a macrostate 

was defined by a fixed number of particles N , a fixed volume V  and a fixed energy 

E . However, the total energy E  of a system is generally not measured. Furthermore, 

it is difficult to keep the total energy fixed. Instead of energy E , temperature T  is a 

better alternate parameter of the system which is directly measurable and controllable. 

Let us consider an ensemble whose macrostate is defined by N , V  and T . Such an 

ensemble is known as canonical ensemble. In the canonical ensemble, the energy E  

can vary from zero to infinity. The set of microstates can be continuous as in most 

classical systems or it can be discrete like the eigenstates of a quantum mechanical 

Hamiltonian. Each microstate s  is characterized by the energy sE  of that state. If the 

system is in thermal equilibrium with a heat-bath at temperature T , then the 

probability sp  that the system to be in the microstate s  is 
T

B
k

s
E

e
/

 , the Boltzmann 

factor. The canonical partition function Z is the sum of the Boltzmann factor over all 

possible microstates  

 
/

( , , ) = =
E k T E

s B s

s s

Z N V T e e
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   

where TkB1/= .The expectation (or average) value of a macroscopic quantity X  is 

given by  
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where sX  is the property X  measured in the microstate s . 
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In the classical limit, the consecutive energy levels are very close and can be considered 

as continuous. In this limit, the canonical partition function can be written as  

   pqddqp
Nh

TVNZ NN

N

33

3
),(exp

!

1
=),,( H  

( !N  is for indistinguishable particles only) and the expectation value of X  is given by  

   pqddqppqX
Z

X NN 33),(exp),(
1

= H   

Helmholtz free energy TSETVNF =),,(  is the appropriate potential or free energy 

to describe the thermodynamic system when the system is in thermal equilibrium with a 

heat-bath at temperatureT . It can be shown that the Helmholtz free energy ),,( TVNF  

of the system is related to the logarithm of the partition function ),,( TVNZ  and it is 

given by  

 ).,,(ln=),,( TVNZTkTVNF B  

 

Thermal equilibrium corresponds to the minimum free energy or maximum entropy at 

finite temperature. All equilibrium thermodynamic properties can be calculated by 

taking appropriate derivatives of the free energy ),,( TVNF  with respect to its 

parameters. 

 

Note: For non-interacting system of N  particles, the partition function Z  can be 

written as NZZ 1=  where 1Z  is the partition function for a single particle. 

Consequently one obtains ideal gas behaviour for N . 

 

Thermodynamic quantities can be calculated by taking different derivatives of the free 

energy F as given below:  

 

Fluid System:   

  Free energy: ZTkF B ln=   
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 Entropy  
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=
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F
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T

 
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=
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  Specific heat  

(constant VPX ,= ) 
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Magnetic System:   

 Free energy: ZTkF B ln=    

   

Chemical potential 

,

=
M H

F

N


 
 
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 Entropy  

,

=
H N

F
S

T

 
 
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 Magnetization  

,

=
T N

F
M

H

 
 

 
 

   

  Specific heat  

(constant = ,X M H ) 

X

X
T

S
TC 










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 Isothermal  

 susceptibility  

T

T
H

M




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
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


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5.3  Grand canonical ensemble (  ,V,T): Consider a system in contact with 

an energy reservoir as well as a particle reservoir and the system could exchange energy 

as well as particles (mass) with the reservoirs. Canonical ensemble theory has 

limitations in dealing these systems and needs generalization. It comes from the 

realization that not only the energy E  but also the number of particles N  of a 

physical system is difficult to measure directly. However, their average values, E  

and N , are measurable quantities. The system interacting with both energy and 

particle reservoirs comes to equilibrium when a common temperature T  and a 

common chemical potential   with the reservoir is established. In this ensemble, each 

microstate ),( sr  corresponds to energy sE  and number of particles rN  in that state. 

If the system is in thermodynamic equilibrium at temperature T  and chemical 

potential , thegrand canonical partition functionis given by 

 
/

, ,

= exp =
E k TNsr s Br

r s r sB B

EN
Q z e

k T k T

  
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where 
T

B
k

e
/

=


z  is the fugacity of the system. In case of a system of continuous energy 

levels, the grand partition function can be written as  

 
3 3

3
=1

1
= exp ( , ) .

!

N N

N
N B

N
Q H p q d qd p

h N k T




  
  
 
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Note that division by !N  is only for indistinguishable particles. 
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The expectation value of a thermodynamic quantity X  is given by  

 
,

,

exp( )

=
exp( )

s r s

r s

r s

r s

X N E

X
N E

 

 

 

 
 




 

The grand potential NTSEVT   =),,(  is the appropriate potential or free 

energy to describe the thermodynamic system in equilibrium with temperature T  and 

chemical potential  . It can be shown that  

 .ln=),,( QTkTV B   

All equilibrium thermodynamic properties can now be calculated by taking appropriate 

derivatives of the grand potential ),,( VT  with respect to its parameters as given 

below. 

 

Fluid System:     

  Grand potential: ( , , ) = lnBV T k T Q    

  

 

 

Entropy 

,

=
V

S
T 

 
 

 
 

Pressure  

,

=
T

P
V 

 
 

   

Number of 

Particles 

,

=
T V

N


 
 

 
 

 

In the table below, statistical quantities and the corresponding thermodynamic 

functions in cases of different ensembles are given. Thermodynamic quantities and 

response functions are different derivatives of these potential functions. 

 

 

  Ensemble   Statistical quantity   Thermodynamic functions 

Microcanonical  Number of microstates: 

),,( VNE  
 Entropy: ln= BkS  

Canonical  Canonical partition function:

),,( TVNZ  

 Helmholtz free energy: 

ZTkF B ln=   

Grand Canonical  Grand partition function:

),,( TVQ   

 Grand potential:

QTkB ln=   
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Lecture-IV 
 

11 Nature of Particles and Statistics: 

Consider a gas of N non-interacting particles described by the Hamiltonian 

 ),(ˆ=),(ˆ

1=

iii

N

i

pqpq HH   

where ),( ii pq  are the coordinate and momentum of the i th particle, iĤ  is the 

Hamiltonian operator.A stationary system of N  particles in a volume V  then can be 

in any one of the quantum states determined by the solutions of the time independent 

Schödinger equation  

 )(=)(ˆ qEq EE H  

where E  is the eigenvalue of the Hamiltonian and E  is the corresponding 

eigenfunction.  

If there are in  particles in an eigenstate i , then the distribution should satisfy  

 .== EnandNn ii

i

i

i

  

 

and the wave functions for N  particles },,,{ 21 Naaa   with ia  particle in the in th 

state can be written as  

(i) Productaaa i
a

i
n

N

i

N  
1=

21 =),,,(   

 

(ii) Symmetric
N
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a
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n

N

i

N  
1=

21
!

1
=),,,(   

(iii) symmetricAnti
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a
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a

N
n

a

N
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N
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a
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a

n

N
a

n

a

n

a
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N 







































21

2

2

2

1

2

1

2

1

1

1

21
!

1
=),,,(  

  

where i  is the eigenfunction of the single particle Hamiltonian iĤ  with eigenvalue 

i . Each single particle wave function i  is always a linear combination of a set of 

orthonormal basis functions }{ j , jijji c  = .  The particles described by these 

three wave functions obey different statistics. )(i  The particles described by the 

product function correspond to different microstate by interchanging particles between 

states. These are then distinguishable particles and obey Maxwell-Boltzmann statistics. 

)(ii In the case of symmetric wave functions, interchanging of particles does not 

generate a new microstate. Thus, the particles are indistinguishable. Also, all the 

particles in a single state correspond to a non-vanishing wave function. That means 

accumulation of all the particles in a single state is possible. These particles obey 

Bose-Einstein statistics and are called bosons. )(iii  For the anti-symmetric wave 

function, if the two particles are exchanged, the two columns of the determinant are 

exchanged and leads to the same wave function with a different sign. Thus, the particles 

are again indistinguishable. However, if any two particles are in one state then the 
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corresponding rows of the determinant are the same and the wave function vanishes. 

This means that a state cannot be occupied by more than one particle. This is known as 

Pauli principle. These particles obey Fermi-Dirac statistics and they are called 

fermions. 

 

Distribution functions:Consider an ideal gas of N  identical particles. Let s  

represents the single particle state and S  denotes the state of the whole system. Total 

energy E  and the number of particles N  are given by 

 

 = and = .s s s

s s

E n N n   

The distribution functions can be calculated by obtaining the appropriate partition 

function. 

 

MB Statistics: In this case the particles are distinguishable. The canonical partition 

function is given by  

 

.ln=ln












 
 i

s

i
s

eNZ


 
The mean number of particles in state s  is then given by  

 .=
ln1

=
s

s

s

s

MBs

e

NeZ
n





 









 

This is the Maxwell-Boltzmann (MB) distribution as already obtained classical 

statistical mechanics. 

 

BE Statistics: The grand canonical partition function Z  of N  indistinguishable 

bosons is given by 

.
(

1ln=ln
)








 







s

s

eZ  

The number of particles in a grand canonical ensemble is given by 

 

  1 ln 1
= = ln 1 =s

s

s s

Z
N e n

  

   

    
    

   
   

 

Thus the average number of molecules in the s  level is  

   
 

   

1 1
= ln 1 = = .

1 1

s

s

s s
s BE

e
n e

e e

  
  

      

 
 

  


   

  
  

 

This is Bose-Einstein (BE) distribution where always s < , otherwise  sn couldbe 

negative.
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FD Statistics: The fermions have only two states, 0=sn  or 1 . Thus, the grand 

canonical partition function for N  indistinguishable fermions is given by  

 

 






 


)(
1ln=ln s

s

e


Z  

The number of particles is given by  

 

 

 

1 ln
= = =

1

s

s
s

s s

Z e
N n

e

  

   

 

 


 

 
   

 

Thus the average number of molecules in the s  level is  

 

1
= .

1s
s FDn

e
  

 


  

This is the Fermi-Dirac (FD) distribution. 

 

However, in the classical limit T  and ,0 BE and FD statistics lead to the 

classical MB statistics. 

 

 
Fig. 1.2. plot of mean occupation number  𝒏𝒔  of a single-particle energy state 𝝐 in a systemof non-interacting particles: 

curve 1 is for fermions, curve 2 for bosons and curve 3 forthe particles obeying Maxwell-Boltzmann statistics. 

 

In the discussion of critical phenomena in the coming chapters we will mostly consider 

either fluid system or localized spins. Both of them are well described by classical 

distinguishable particles and thus will follow MB statistics.  
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Problems 

Problem 1: Consider a monatomic ideal gas of N  molecules confined in a volume V  

having total energy E  in thermodynamic equilibrium. Calculate the number of 

microstates of the system considering  

 3 3 3 3

3 3

1 1
( , , ) = and ( , , ) = .

!

E E E E
N N N N

N NE E
E N V d qd p E N V d qd p

h h N

  

    

Calculate the entropy S  of the system as a function of ),,( VNE  considering both the 

formulae and calculate the temperature of the system.. 

 

Problem 2: Consider a system with two compartments with an impenetrable partition. 

Both the compartments of equal volume V  are filled with the same monatomic ideal 

gas of N  molecules and total energy E  each. The whole system is in thermodynamic 

equilibrium. Calculate the change in entropy S  after removing the partition once 

without dividing   by !N  and then dividing   by !N . Check that 2ln2= BNkS  

in the first case and 0=S  in the second case. (Gibb's paradox is resolved only if the 

gas molecules are assumed to be indistinguishable). 

 

Problem 3: Consider a system of N  localized spin-1/2  magnetic ions of magnetic 

moment   in an external magnetic field H  having total energy E . Calculate the 

entropy of the system ln=),,( BkHNES  where )!!/(!= 21 NNN  is total number 

of accessible states with 1N  up spins and 2N  down spins configurations. Check that  

 .
2

ln
22

ln
2

= 






 







 


HN

EHN

HN

EHN

HN

EHN

HN

EHN

Nk

S

B 














 

Treating E  to be continuous, plot BNkS/  versus HNE / . Show that this system can 

have negative absolute temperature for the positive energy region. Why negative 

absolute temperature is possible here but not for a gas in a box? 

 

Problem 4: Consider a monatomic ideal gas of N particles enclosed in a volume V. The 

system is in thermodynamic equilibrium with a heat bath at temperature T. Calculate 

the canonical partition function Z, obtain internal energy E, Helmholtz free energy F 

and entropy S. Verify the equation of state PV=NkBT.    

 

Problem 5: Consider N  localized one dimensional classical Harmonic oscillators of 

frequency   in thermal equilibrium at temperature T . Obtain the canonical partition 

function N

BTkZ )/(=  . Calculate the internal energy E  of the system. Check that 

the energy obtained is satisfying the equipartition theorem, /2TkB  thermal energy per 

square term in the Hamiltonian. 

 

 

 

 

 

 

 

 

 



NPTEL – Physics – Advanced Statistical Mechanics 
 

Joint initiative of IITs and IISc – Funded by MHRD                                       Page 18 of 19      

Problem 6: Consider N  localized one dimensional quantum Harmonic oscillators of 

frequency   in thermal equilibrium at temperature T . Obtain the canonical partition 

function N

BTkZ )]/2(sinh[2=  . Show that the internal energy E  of the system is 

given by  

 .
12

=
/ 












T
B

k
e

NE






 

(Note that E  is not satisfying equipartition theorem.) Check that TNkE B  as 

T  and /2NE   as 0T  as expected. 

 

Problem 7: Consider a system on N localized noninteracting paramagnetic ions of 

spin- ½ and magnetic moment µ in an external magnetic field H is in thermal 

equilibrium at temperature T. Obtain the canonical partition function Z. Calculate 

magnetization M and susceptibility χ. Check that at high temperature, χ is inversely 

proportional to T.  

 

Problem 8: Consider a monatomic ideal gas of N particles enclosed in a volume V. The 

system is in thermodynamic equilibrium with a heat bath at temperature T and at 

constant chemical potential µ. Calculate the grand canonical partition function Q, 

obtain the grand potential Φ = −𝑘𝐵𝑇𝑙𝑛𝑄. Verify the equation of state PV=NkBT.    

 

Problem 9: Consider N  localized one dimensional quantum Harmonic oscillators of 

frequency   in thermodynamic equilibrium at temperature T  and chemical potential 

µ. Obtain the grand canonical partition function 1/
)]/2(sinh2/[1=  TkeQ B

TkB   . 

 

Problem 10: Consider a single component system of volume V , having two phases - 

solid and vapour, in equilibrium at temperature T . Treating the vapour as a monatomic 

ideal gas and the solid as quantum harmonic oscillator, show that a solid phase exists 

below a characteristic temperature cT  given by VNTTf cc /=)()/(   where N  is the 

total number of particles in the system, 3/22]/[2=)( hTmkTf B  and 
1)]/(sinh[2=)( TkT B  . 

 

[ These problems are usual text book problems and can be found as examples in the text 

books given in the references.]   
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