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Chapter 1. Thermodynamics

1.1 Introduction

Thermal behaviour of macroscopic matter is of great importance in science and

technology. The study of thermal behaviour of matter started a chapter in Physics

called Thermodynamics during nineteenth century. In the nineteenth century itself,

it was first recognized that heat is a form of energy and could be converted into other

forms of energy. Thermodynamics is mainly concerned with the conversion of heat

into mechanical work and vice versa. The equivalence of heat and mechanical work

was then established and the principle of the conservation of energy was proposed.

Indeed, that was a great realization. But, it was not clear at that point of time what

is the source of this heat energy. If matter is made up of atoms or molecules, then

what they do at a given temperature? This particular question receives tremendous

attention during the latter part of nineteenth century. The answer to this question

leads to another subject in thermal physics called Statistical Mechanics. Thermo-

dynamics deals with the basic laws governing heat whereas Statistical Mechanics

explains the laws of thermodynamics in terms of kinetics of atoms or molecules in a

macroscopic object. Eventually, it was found that all thermal phenomena are linked

to disordered motions of atoms and molecules, the constituents of matter. Statistical

Mechanics then could be considered as a microscopic theory of the phenomenological

subject like Thermodynamics. This article will have two sections, Thermodynamics

and Statistical Mechanics. In the first section, the principles or laws of thermo-

dynamics will be discussed. The microscopic theory or the statistical mechanical

derivation of these laws will be given in the section of Statistical Mechanics.

Thermodynamics deals with the thermal properties of matter in bulk by determining

the relationship between different parameters of the system. In order to determine

different relationships between the system parameters, the internal structure of mat-

ter is completely ignored in thermodynamics. Atoms in matter and their behaviour

with temperature is not considered in this subject. Thermodynamics is purely based

on principles formulated by generalizing experimental observations. There are ba-

sically four principles in this subject, namely (i) the temperature principle, (ii) the

energy principle, (iii) the entropy principle, and (iv) the Nernst postulate. These

four principles are also known as the zeroth law, first law, second law, and third

law of thermodynamics. In the following, these principles will be described and

they will be applied to physical problems in order to understand their validity and

consequences.
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1.2 Basic Concepts of Thermodynamics

1.2 Basic Concepts of Thermodynamics

Before describing thermodynamic principles and their consequences in different

physical situations, few basic concepts necessary for the understanding of these

principles are discussed here. These concepts involve the definition of a thermo-

dynamic system and its environment, necessity of using specific thermodynamic

parameters in order to describe a thermodynamic system, and most importantly

the thermodynamic equilibrium.

1.2.1 Thermodynamic Systems:

Any macroscopic material body could be considered as a thermodynamic system.

Macroscopic system means a system composed of atoms or molecules of the order

of one Avogadro number (NA ≈ 6.022 × 1023) per mole. The examples of thermo-

dynamic system could be a wire under tension, a liquid film, a gas in a cylinder,

radiation, a solid material, magnetic material, dielectrics, and many others. The

thermodynamic systems should have a boundary which separates the systems from

the surroundings. Consider a drop of liquid as a thermodynamic system. The sur-

face of the liquid is the boundary between the liquid and air. In the language of

thermodynamics, the boundary is considered as a wall. This has been demonstrated

in Figure 1.1. The nature of the wall classifies the thermodynamic system in differ-
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Figure 1.1: Schematic representation of a thermodynamic system. The shaded area is

the surroundings or the universe. The thick line represents the boundary. The central

white space is the system.

ent categories. (i) If the wall is such that energy or matter (atoms or molecules)

cannot be exchanged between the system and its surroundings, then the system is

called isolated. Total energy E, and total number of particles N are conserved for

this system. (ii) The wall is such that only energy could be exchanged between

the system and the surroundings. If the system is in thermal contact with a heat
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Chapter 1. Thermodynamics

bath in the surroundings, heat energy will be exchanged however total number of

particles will remain constant. This system is known as closed system. (iii) If the

wall is porous, then, beside energy, matter (atoms or molecules) can also be ex-

changed between the system and the surroundings. If the system is in contact with

a heat bath as well as with a particle reservoir, heat energy and number of particles

both will be exchanged. Neither energy nor number of particles is conserved in this

system. The system is called an open system.

1.2.2 Thermodynamic Parameters:

Thermodynamic parameters are measurable macroscopic physical quantities of a

system. Consider a gas in a cylinder. Measurable physical quantities are the pres-

sure (P ), temperature (T ) and the volume (V ) of the gas. These physical quantities

are called thermodynamic parameters or thermodynamic variables. The

thermodynamic variables are macroscopic in nature. They are divided in two cat-

egories, intensive and extensive parameters. In thermodynamic equilibrium, the

intensive parameter has the same value everywhere in the system. Pressure is an

example of intensive parameter. It is same everywhere in the gas at equilibrium.

On the other hand, the value of the extensive variable changes with the size of the

system. For example, volume is an extensive parameter. Every intensive parameter

has a corresponding independent extensive parameter. They form a conjugate pair

of thermodynamic variables. Since they are independent of each other, one could be

changed without effecting the other. Keeping the pressure constant the volume of

the gas can be changed and vice versa. A partial list of conjugate thermodynamic

parameters are given in Table 1.1. For each system, there always exists one more

System Intensive parameter Extensive parameter
Wire Tension (τ) Length (L)
Liquid film Surface tension (γ) Surface area (A)
Fluid Pressure (P ) Volume (V )
Charged particles Electric potential (φ) Electric charge (q)
Magnetic material External magnetic field (B) Total magnetization (M)
Dielectrics External electric field (E) Electric polarization (P)

Table 1.1: A partial list of intensive and extensive conjugate variables for different

thermodynamic systems.

pair of conjugate intensive and extensive parameters. They are temperature (T )

4



1.2 Basic Concepts of Thermodynamics

and entropy (S). Temperature is the other intensive parameter and entropy is the

corresponding conjugate extensive parameter.

1.2.3 Thermodynamic State:

Position and momentum coordinates are used to specify the state of a particle in

mechanics. Similarly, the state of a thermodynamic system can be specified by

the given values of a set of thermodynamic parameters. For example, the state

of a fluid system can be specified by the pressure P , volume V , and temperature

T and specified as (P, V, T ). For an dielectric of polarization P at temperature T

under an external electric field E, the state is defined by (E,P, T ). For a magnetic

system the state can be given by (M,B, T ). For every thermodynamic systems

there always exists three suitable thermodynamic parameters to specify the state

of the system. It is important to notice that thermodynamic parameters are all

macroscopic measurable quantities. On the other hand, microscopic quantities like

position or momentum of the constituent particles are not used for specifying the

state of a thermodynamic system.

1.2.4 Thermodynamic Equilibrium:

The equilibrium condition in mechanics is defined as: in absence of external forces,

if a particle is slightly displaced from its stable equilibrium position it will come

back to its original position after some time. Consider a thermodynamic system like

gas in a cylinder. Suppose the gas is in a state defined by the given thermodynamic

parameter values (P, V, T ). The downward force (W ) due to the weight of the piston

is just balanced by the upward force exerted by the pressure (P ) of the gas, and

the system is in equilibrium. If the piston is slightly depressed and released, it will

oscillate around the equilibrium position for some time and slowly come to rest at

the original equilibrium position. It means that if a small external force is applied to

the system and released, the system would come back to the thermodynamic state

it was in originally, i.e., the values of all the extensive and intensive parameters

would recover. This definition is very similar to the definition of equilibrium given

in mechanics and known as mechanical equilibrium of a thermodynamic system.

Apart from mechanical equilibrium, the system should have thermal and chemical

equilibrium as well to achieve thermodynamic equilibrium of a system.

Consider an isolated system with two partial systems. Initially each of them are
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Chapter 1. Thermodynamics

in equilibrium at different temperatures. Temperature at all points of each system

are the same. They are now taken into thermal contact, only exchange of heat

and no exchange of matter, with each other. Heat would flow from the system of

higher temperature to the system of lower temperature until uniform temperature

is attained throughout the combined system. The system is then in thermal equi-

librium. Experience shows, all systems which are in thermal equilibrium with a

given system are also in thermal equilibrium with each other. This principle defines

the temperature of a thermodynamic system and known as zeroth law of thermo-

dynamics. Hence systems which are in thermal equilibrium with each other have a

common intensive property, i.e., temperature.

Suppose the system is a mixture of several different chemical components. When

the composition of the system remain fixed and definite, the system is said to be

in chemical equilibrium. Generally, chemical equilibrium takes a long time to

achieve. Sometimes the system appears to be in chemical equilibrium, having fixed

amount of components but the chemical reaction may continue with an extremely

slow reaction rate.

The mechanical equilibrium therefore refers to uniformity of pressure, the thermal

equilibrium refers to uniformity of temperature and the chemical equilibrium refers

to the constancy of chemical composition. If there exist in the system gradients of

macroscopic parameters such as pressure, temperature, density, etc such a state of

the system is referred as a non-equilibrium state. A system which satisfies all possible

equilibrium conditions is said to be in thermodynamic equilibrium. Thermodynamic

equilibrium is thus correspond to the situation when the thermodynamic state does

not change with time.

1.2.5 The Equation of State:

The equation of state is a functional relationship among the thermodynamic pa-

rameters for a given system in equilibrium. If X , Y and Z are the thermodynamic

parameters for a system, the equation of state takes the form

F(X, Y, Z) = 0.

The equation of state then defines a surface in the three dimensional X − Y − Z

space and any point lying on this surface represents an equilibrium state. The

6



1.2 Basic Concepts of Thermodynamics

parameters (X, Y, Z) correspond to thermodynamic parameters of a given system.

Such as, for a fluid system (X, Y, Z) correspond to pressure, volume and temperature

(P, V, T ), for a surface film (X, Y, Z) correspond to surface tension, surface area, and

temperature (γ, A, T ), for a magnetic material (X, Y, Z) correspond to magnetic

field, magnetization and temperature (H,M, T ), and so on. Since the parameters

X , Y and Z are related by the equation of state, then all three parameters are not

independent, only two of them are independent. If pressure P and volume V of a

fluid system are given, the temperature of the fluid is automatically fixed by the

equation of state F(P, V, T ) = 0 if the fluid is in thermodynamic equilibrium. The

equation of state thus reduces the number of independent thermodynamic variables

from three to two.

The gaseous system at high temperature and low pressure generally follow the

Boyle’s law. The equation of state of one mole of a gas is given by

PV = RT

where R ≈ 8.31 J/mole.K is a universal constant. This is known as ideal gas equation

and the gases which obey this equation are called ideal gas. For ideal paramagnet

the equation of state is given by
M

B
=
C

T

where C a material dependent constant is known as Curie constant.

However, real gases like O2, CO2 etc., generally do not obey Boyle’s law at all

conditions and a different set of equation of state are proposed for real gases. Such

as van der Waals’ equation of state

(P +
a

V 2
)(V − b) = RT

where a and b are specific constants for a particular gas.

1.2.6 Thermodynamic Transformations:

A thermodynamic transformation is a change of state. If one or more of the pa-

rameters of a system are changed, the state of the system changes. It is said that

the system is undergoing a transformation or process. The transformation is gener-

ally from an initial equilibrium state to a final equilibrium state. Thermodynamic

7



Chapter 1. Thermodynamics

processes are classified into two groups (i) irreversible and (ii) reversible.

1.2.6.1 Irreversible Process:

The water from the slopes of the Himalayas flows down the Ganges into the Indian

Ocean. The water in the Indian Ocean will never go back to the hill on itself even

if the total energy loss during the down flow producing heat and sound energy

is supplied back to the water at the Ocean. This means that the work done in

the forward process is not equal to the work done in the backward process. Such

natural flow of liquid downward is spontaneous and is irreversible. Almost all natural

spontaneous processes are irreversible, just reversing the direction of the process it is

not possible to get back the initial state. Consider free expansion of a gas. It does no

work during the free expansion however to compress it back to the original volume

a large amount of work has to be performed on the gas. A pendulum without

a driving force will by itself cease to swing after some time, since its mechanical

energy is transformed into heat by friction. The reverse process, that a pendulum

starts swing by itself while the surroundings cool, has never been occurred. It is

characteristic of irreversible processes that they proceed over non-equilibrium states

dissipating energy in various forms during the transformation from one state to the

other. Ferromagnets are magnetized by applying external magnetic field. If the

external filed is reduced the magnetization curve does not follow the original path

and forms a hysteresis loop because during magnetization the system dissipates

energy in the form of heat and sound.

1.2.6.2 Reversible Process:

In a reversible process, the change of states occurs only over equilibrium intermediate

states. That is to say, all steps between the final and initial states are in equilibrium

during a reversible process. A reversible process is then an idealization. Because,

if a system is in thermodynamic equilibrium, the parameters should not change

with time. On the contrary, in order to change the state one needs to change the

parameter values. However, a reversible process could be realized in a quasi static

manner. In a quasi static process, infinitesimal change in the parameter values are

made sufficiently slowly compared to the relaxation time of the system. Relaxation

time is the time required for a system to pass from a non-equilibrium state to an

equilibrium state. Thus, if the process rate is considerably less than the rate of

relaxation, there will be enough time for the parameters to equalize over the entire

8



1.3 Exact and inexact differentials

system and the system could be considered at equilibrium. The process will represent

a continuous succession of equilibrium states infinitely close to each other and could

be considered as a reversible process, reversing the direction of the process one could

reach to the initial state from the final state following the same path.

The reversible change could be performed under different conditions. Consider a

thermally insulated system where no heat exchange is possible, any process under

this condition is an adiabatic process. Reversible adiabatic process are also known as

iso-entropic process. If a system undergoes a change keeping temperature constant,

it is called an isothermal process, it is an isochoric process if volume kept constant

and it is an isobaric process if pressure remains constant.

1.3 Exact and inexact differentials

Thermodynamic parameters are related through the state function or the equation

of state

F(X, Y, Z) = 0 or Z = f(X, Y ).

It is characteristic of the state quantities and the state functions, that they depend

only on the values of the state variables, but not on the way, the procedure by which

these values are realized. If one changes the state variables (X, Y ) by dX and dY

amount from their initial values, keeping the other constant, in order to change the

parameter Z infinitesimally, the change in Z can be expressed as

dZ =
∂f(X, Y )

∂X

∣

∣

∣

∣

Y

dX +
∂f(X, Y )

∂Y

∣

∣

∣

∣

X

dY

or more generally

dZ = df(~x) = ∇f(~x) · d~x

where ~x = (X, Y ). If the state of the system is changed from ~x0 to ~x along a path

C then

f(~x)− f(~x0) =

∫

C

∇f(~x) · d~x =

∫

C

~F (~x) · d~x

where ~F (~x) = ∇f(~x) could be considered as a force. Thus a thermodynamic variable

to be a state function or its elementary change to be an exact differential if there

exists a potential f(~x) whose gradient correspond to a thermodynamic force. Since
~F (~x) = ∇f(~x), the necessary and sufficient condition that a given differential to be

9



Chapter 1. Thermodynamics

exact is then given by

∇× ~F = 0

or
∂Fy

∂x
− ∂Fx

∂y
= 0,

∂Fx

∂z
− ∂Fz

∂x
= 0,

∂Fz

∂y
− ∂Fy

∂z
= 0

or
∂2f

∂x∂y
=

∂2f

∂y∂x
,

∂2f

∂z∂x
=

∂2f

∂x∂z
,

∂2f

∂y∂z
=

∂2f

∂z∂y

This simply means that the interchange in sequence of differentiation has no effect.

This is a property of a totally differentiable function.

1.4 Work, Heat and Internal Energy

1.4.1 Work:

Work appears during a change in state. The definition of work in thermodynamics

is borrowed from mechanics and it is given by

δW = −~F · ~dℓ

where ~F is the force acting on the system during a small displacement ~dℓ. The

negative sign is a convention in thermodynamics and it is decided by the fact that:

work done by the system is negative and work done on the system is positive. In

mechanics, doing work the potential or kinetic energy of the system is changed. Sim-

ilarly, work is equivalent to energy exchange in thermodynamics. Energy exchange

is positive if it is added to a system and it is negative if it is subtracted from a

system. Note that, only macroscopic work is considered here, and not on an atomic

level.

Consider a gas enclosed in a cylinder at an equilibrium thermodynamic state (P, V, T ).

Assuming that there is no friction between the piston and the cylinder, the force

acting on the gas, i.e., the weight on the piston, is F = PA where A is the cross sec-

tional area of the piston. In order to compress the volume by an infinitesimal amount

dV , the piston is pushed down by an infinitesimal amount dℓ. The corresponding

work done is

δW = −~F · ~dℓ = PAdℓ = −PdV

since pressure is acting in a direction opposite to the displacement and Adℓ =

10



1.4 Work, Heat and Internal Energy

−dV during compression. The same definition is also valid for expansion. In case

of expansion, the pressure will act in the same direction of the displacement and

Adℓ = dV .

Thus, work is the product of an intensive state quantity (pressure) and the change

of an extensive state quantity (volume). One could easily verify that the same

definition can be applied to the other thermodynamic systems. For example, in case

of dielectrics and magnetic materials, in order to change the electric polarization P

or magnetization M by a small amount dP or dM in presence of electric field E or

magnetic field H, the amount of work has to be performed on the systems are

δW = E · dP or δW = B · dM

where E and B are the intensive parameters and P and M are extensive parameters.

In order to change the particle number by dN , one should add particles those have

energy comparable to the mean energy of other particles otherwise equilibrium will

be lost. Let us define

δW = µdN

as the work necessary to change the particle number by dN . The intensive field

quantity µ is called the chemical potential and represents the resistance of the system

against adding particles.

However, this definition is only valid for an infinitesimal displacement because the

pressure changes during the change of volume. To calculate the total work done then

one needs to know the equation of state P = f(V, T ) and the nature of the process.

For a reversible process, the total work done can be obtained just by integrating δW

from the initial to the final state

W =

∫ 2

1

δW = −
∫ 2

1

P (V, T )dV.

In a reversible cyclic path, the work done is then zero. Since the work depends on

the process or the path of integration, it is then an inexact differential. Notice that,

the above definition is only for reversible process. In an irreversible process (sudden

expansion or compression of gas), the work needed to change the state is always

larger than the work needed to change the state in a reversible way, δWirr ≥ δWrev.

In other words, for reversible process one requires the least work or the system

11



Chapter 1. Thermodynamics

produces the most work, while for a irreversible process a part of the work is always

converted into heat which is radiated out of the system.

1.4.2 Heat:

Heat, another form of energy, is the measure of the temperature of a system. Let

us define

δQ = CdT

where δQ is a small amount of heat which causes the increase in the temperature

by dT of a system. The proportionality constant C is called the total heat capacity

of the system. Though work and heat are just different form of energy transfer,

the main difference between work and heat is that work is energy transfer via the

macroscopic observable degrees of freedom of a system, whereas heat is the direct

energy transfer between microscopic, i.e., internal degrees of freedom. For example,

consider gas in a thermally isolated cylinder with a piston. In order to compress the

gas, work has to be performed on the gas by changing the macroscopic coordinate,

the position of the piston. On the other hand, the warming up of the gas during

the compression is due to the elastic collisions of the gas molecules with the moving

piston. The energy gained in elastic collisions with the moving piston is shared

between all other molecules by subsequent molecular collisions. Moreover, work can

be easily transformed into heat but heat cannot be wholly converted into work. In

order to convert heat into work one always needs a thermodynamic engine. Heat

always flows from a hotter body to a colder body. Heat is an extensive quantity.

Therefore, the total heat capacity C is also an extensive quantity, since temperature

is an intensive parameter. However, the specific heat c defined as c = C/m where

m is the mass of the substance, is an intensive quantity. It is also possible to define

the specific heat on a molar basis, C = ncmol, with n = N/NA where N is the total

number of particles and NA is the Avogadro number. The quantity cmol is the molar

specific heat. The heat capacity may depend on the external conditions under which

heat is transferred to the system. It matters whether a measurement is performed

at constant pressure or at constant volume. The corresponding specific heats are

cP =
1

m

(

δQ

dT

)

P

, and cV =
1

m

(

δQ

dT

)

V

.

They are known as specific heat at constant pressure and specific heat at constant

volume respectively.

12



1.5 The Laws of Thermodynamics

1.4.3 Internal energy:

Let us consider the energy E of a given state of a macroscopic system. According to

the laws of mechanics, the energy E is the sum of (i) the energy of the macroscopic

mass motion of the system, and (ii) the internal energy of the system.

The energy of the mass motion consists of the kinetic energy of the motion of the

center of mass of a system, plus the potential energy due to the presence of an

external force field. In thermodynamics, we are interested in the internal properties

of the system and not in their macroscopic mass motion. Usually the stationary

systems are considered and the potential energy due to any external field becomes

unimportant. Thus, energy in thermodynamics means the internal energy.

The internal energy of a system is the energy associated with its internal degrees of

freedom. It is the kinetic energy of the molecular motion plus the potential energy

of the molecular interaction. In an ideal gas, the internal energy is the sum of the

translational kinetic energy of the gas molecules due to their random motion plus

the rotational kinetic energy due to their rotations, etc. In a crystal, the internal

energy consists of the kinetic and potential energy of the atoms vibrating about

their equilibrium positions in the crystal lattice. Thus the internal energy is the

energy associated with the random molecular motion of the atoms or molecules or

the constituent particles of the system. However, in thermodynamics it is not our

interest to calculate internal energy from microscopic interaction. Internal energy

will be considered here as a thermodynamic potential.

1.5 The Laws of Thermodynamics

1.5.1 The first law:

The principle of conservation of energy is of fundamental importance in Physics.

The first law is a law of conservation of energy in thermodynamics. The principle

of conservation of energy is valid in all dimensions, i.e., in macroscopic as well

as in microscopic dimensions. Therefore, in thermodynamics one should consider

conservation between work done (W ) which may be performed by or on a system,

heat exchange (Q) with the surroundings and the change in internal energy (E).

Suppose there is an isolated system, no heat exchange, and some work ∆W is

performed on the system. There is then an increase in the internal energy ∆E of

13



Chapter 1. Thermodynamics

the system. The conservation of energy demands

∆E = ∆W.

Suppose instead of doing work on a system, an amount of heat ∆Q is exchanged

with the surroundings which raises the internal energy by ∆E and one has

∆E = ∆Q.

The first law says that the change in the internal energy ∆E for an arbitrary (re-

versible or irreversible) change of state is given by the sum of work done ∆W and

heat exchange ∆Q with the surroundings. One thus writes

First law: ∆E = ∆W +∆Q.

The work done and the heat exchange with the surroundings in a small change in

state depend on the way in which the procedure takes place. They are then not

exact differentials. On the other hand, the change in internal energy is independent

of the way the procedure takes place and depends only on the initial and final

state of the system. The internal energy is therefore an exact differential. In order

to distinguish the exact and inexact differentials in case of infinitesimal change of

state, the following notations are used

dE = δW + δQ.

Since the internal energy E depends only on the macroscopic state of the system, it

is then a state function. For a state function, the infinitesimal change dE is always

a total differential. Since dE is a total differential and path independent, for a cyclic

process where a system comes back to its initial state after passing through a series

of changes of state, the equation

∮

dE = 0

is always true.

Now, one can write the differential form of the first law in different context:

14



1.5 The Laws of Thermodynamics

Fluid system: dE = δQ− PdV Strained wire: dE = δQ+ τdL

Surface film: dE = δQ+ γdA Magnetic materials: dE = δQ+BdM

The definitions of heat capacities can be rewritten in terms of energy now. Consider

one mole of a fluid and the first law for the fluid can be written as

δQ = dE + PdV.

Since Q is not a state function, the heat capacity depends on the mode of heating

the system and one has heat capacities at constant volume and constant pressure.

The molar heat capacity at constant volume is then given by

CV =

(

δQ

∂T

)

V

=

(

∂E

∂T

)

V

.

The energy is then a function V and T : E = E(V, T ). The molar heat capacity

at constant pressure then can be written as

CP =

(

δQ

∂T

)

P

=

(

∂E

∂T

)

P

+ P

(

∂V

∂T

)

P

.

The energy E in this case is a function P and T : E = E(p, T ). If the considered

fluid is an ideal gas for which the specific heat is a constant, the volume occupied

by the molecules and their mutual interactions are negligible, the internal energy E

is function of temperature T only E = E(T ).

1.5.2 Carnot’s process and entropy:

Consider one mole of monatomic ideal gas as working substance. In the Carnot pro-

cess, the working substance is taken back to its original state through four successive

reversible steps as illustrated in a p V diagram in Figure 1.2.

Step 1. Isothermal expansion from volume V1 to volume V2 at constant temperature

T1. For the isotherm, P1V1 = P2V2 = RT1 where R is the universal gas constant.

Since E = E(T ) for ideal gas,

∆E1 = ∆W1 +∆Q1 = 0 =⇒ ∆Q1 = −∆W1 = RT1 ln

(

V2
V1

)

.
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Chapter 1. Thermodynamics

Since V2 > V1, then ∆Q1 > 0, i.e., the amount of heat ∆Q1 is absorbed by the gas

from the surroundings.

Step 2. Adiabatic expansion of the gas from V2 to V3. The temperature decreases

from T1 to T2 (T1 > T2). The equation of state is V3/V2 = (T1/T2)
3/2. Since ∆Q = 0,

∆E2 = ∆W2 = CV (T2 − T1).

T

V

3

2

32

2

4 4

1 1

T1

P (P , V )

(P , V )

(P , V )

(P , V )

Figure 1.2: Carnot processes of an ideal gas represented on the P V diagram.

Step 3. Isothermal compression from V3 to V4 at temperature T2. The equation of

state is: P3V3 = P4V4 = RT2. Again one has,

∆E3 = ∆W3 +∆Q2 = 0 =⇒ ∆Q2 = −∆W3 = −RT2 ln
(

V3
V4

)

.

Since V3 > V4, ∆Q2 < 0, the amount of heat is released by the gas.

Step 4. Adiabatic compression from V4 to V1. Here temperature increases from T2

to T1 and the equation of state is V1/V4 = (T2/T1)
3/2. Since ∆Q = 0,

∆E4 = ∆W4 = CV (T1 − T2) = −∆W2.

The net change in internal energy ∆E = ∆E1 + ∆E2 + ∆E3 + ∆E4 = 0 as it is

expected. Consider the amount of heat exchanged during the isothermal processes:

∆Q1 = RT1 ln

(

V2
V1

)

and ∆Q2 = −RT2 ln
(

V3
V4

)

.
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1.5 The Laws of Thermodynamics

During the adiabatic processes, one has combining the equation of states

V3/V2 = V4/V1 =⇒ V2/V1 = V3/V4.

This implies that
∆Q1

T1
+

∆Q2

T2
= 0.

If the Carnot’s cycle is made of a large number of infinitesimal steps, the above

equation modifies to
∮

δQ

T
= 0.

This is not only true for Carnot’s cycle but also true for any reversible cyclic process.

Suppose that the state of a thermodynamic system is changed from state 1 to state

2 along a path C1 and the system is taken back to the initial state along another

reversible path C2, as shown in Figure 1.3. Thus, 1C12C21 forms a closed reversible

1

2
X

Y

C
C1

2

Figure 1.3: A reversible cyclic process on a XY diagram where X and Y form a

conjugate pair of thermodynamic variables.

cycle and one has

∮

1C12C21

δQ

T
= 0 or

∫ 2

1

(

δQ

T

)

C1

+

∫ 1

2

(

δQ

T

)

C2

= 0

Since, the paths are reversible, one also has

∫ 1

2

(

δQ

T

)

C2

= −
∫ 2

1

(

δQ

T

)

C2

and therefore
∫ 2

1

(

δQ

T

)

C1

=

∫ 2

1

(

δQ

T

)

C2

17



Chapter 1. Thermodynamics

Thus the integral
∫

δQ/T is path independent, i.e., independent of the process of

heating or cooling the system. The integral depends only on the initial and final

states of the system and thus represents a state function whose total differential

is δQ/T . Since heat is an extensive quantity, this state function, say S, is also

extensive whose conjugate intensive parameter is temperature T . This extensive

state function is the entropy S and defined as

dS =
δQ

T
and S2 − S1 =

∫ 2

1

δQ

T
.

Note that, only entropy difference could be measure, not the absolute entropy. The

statistical mechanical definition of entropy will be given in the section of statistical

mechanics.

1.5.3 The second law:

The first law of thermodynamics tells us about the conservation of energy in a

thermodynamic process during its change of state. The second law tells us about

the direction of a natural process in an isolated system. The entropy S = δQrev/T

is the amount of heat reversibly exchanged with the surroundings at temperature

T . Since the amount of heat δQirr exchanged in an irreversible process is always

less than that of δQrev exchanged in a reversible process, it is then always true that

δQirr < δQrev = TdS.

For an isolated system, δQrev = 0. Therefore, in an isolated system the entropy

is constant in thermodynamic equilibrium and it has an extremum since dS = 0.

It is found that in every situation this extremum is a maximum. All irreversible

processes in isolated system which lead to equilibrium are then governed by an

increase in entropy and the equilibrium will be reestablished only when the entropy

will assume its maximum value. This is the second law of thermodynamics. Any

change of state from one equilibrium state to another equilibrium state in an isolated

system will occur naturally if it corresponds to an increase in entropy.

Second law: dS = 0, S = Smax

and for irreversible processes

dS > 0.
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1.5 The Laws of Thermodynamics

Note that, entropy could be negative if there is heat exchange with the surroundings

i.e., the system is not an isolated system. It is positive only for an isolated system.

The first law for reversible changes now can be rewritten in terms of entropy:

Fluid system: dE = TdS − PdV Strained wire: dE = TdS + τdL

Surface film: dE = TdS + γdA Magnetic materials: dE = TdS +HdM

If there is exchange of energy of several different forms, the first law should take a

form

dE = TdS − PdV +HdM + µdN + · · ·

1.5.4 The third law:

The third law of thermodynamics deals with the entropy of a system as the absolute

temperature tends to zero. It is already seen that

∆S = S2 − S1 =

∫ 2

1

δQ

T
,

and one can only measure the entropy difference between two states. The absolute

value of entropy for a given thermodynamic states remains undetermined because

of the arbitrary additive constant depending on the choice of the initial state. The

third law enables us to determine the additive constant appearing in the definition

of entropy. It states that: the entropy of every system at absolute zero can always

be taken equal to zero,

lim
T→0

S = 0.

The zero temperature entropy is then independent of any other properties like vol-

ume or pressure of the system. It is generally believed that the ground state at

T = 0 is a single non-degenerate state. It is therefore convenient to choose this non-

degenerate state at T = 0 as the standard initial state in the definition of entropy

and one could set the entropy of the standard state equal to zero. The entropy of

any state A of the system is now defined, including the additive constant, by the

integral

S(A) =

∫ A

T=0

δQ

T

where the integral is taken along a reversible transformation from T = 0 state (lower

limit) to the state A. Since dQ = C(T )dT , the entropy of a system at temperature
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T can also be given as

S =

∫ T

0

CV (T )

T
dT or S =

∫ T

0

CP (T )

T
dT

when the system is heated at constant volume or constant pressure. As a conse-

quence of the third law S(0) = 0, the heat capacities CV or CP at T = 0 must be

equal to zero otherwise the above integrals will diverge at the lower limit. Thus, one

concludes

CV or CP → 0 as T → 0.

The results are in agreement with the experiments on the specific heats of solid.

1.6 Thermodynamic Potentials and Maxwell relations

By the second law of thermodynamics, an isolated system during a spontaneous

change reaches an equilibrium state characterized by maximum entropy:

dS = 0, S = Smax.

On the other hand, it is known from mechanics, electrodynamics and quantum

mechanics that a system which is not isolated minimizes its energy. An interacting

thermodynamic system always exchanges heat or perform work on the surroundings

during a spontaneous change to minimize its internal energy. However, the entropy

of the system plus the surroundings, which could be thought as a whole an isolated

system, always increases. Thus, a non-isolated system at constant entropy always

leads to a state of minimum energy.

1.6.1 Entropy as a thermodynamic potential:

Both entropy and the internal energy are state functions. If they are known as func-

tion of state variables of an isolated system then all other thermodynamic quantities

are completely known. Consider the internal energy E = E(S, V,N) then,

dE = TdS − PdV + µdN
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1.6 Thermodynamic Potentials and Maxwell relations

and consequently the temperature and pressure are known as functions of other

state variables

T =

(

∂E

∂S

)

V,N

, −P =

(

∂E

∂V

)

S,N

, µ =

(

∂E

∂N

)

S,V

.

Similarly, consider the entropy S = S(E,N, V ), then

TdS = dE + PdV − µdN

and the temperature and pressure can be found as

1

T
=

(

∂S

∂E

)

V,N

, P = T

(

∂S

∂V

)

E,N

, µ = −T
(

∂S

∂N

)

E,V

.

The entropy and the internal energy then can be calculated as functions of the state

variables form the equation of state. Since the equilibrium state of the system is

given by a maximum of the entropy as a function of (E, V ), it gives information about

the most stable equilibrium state of the system as potential energy does in mechanics.

As the difference in potential energy defines the direction of a natural process in

mechanics, the entropy difference determines the direction of a spontaneous change

in an isolated system. Thus, the entropy can be called as a thermodynamic potential.

1.6.2 Enthalpy as a thermodynamic potential:

The enthalpy of a system is defined as

H = E + PV

and in the differential form

dH = dE + PdV + V dP =⇒ dH = TdS + V dP + µdN.

Knowing the enthalpy H = H(S, P,N), the state variables can be calculated as

T =

(

∂H

∂S

)

P,N

, V =

(

∂H

∂P

)

S,N

, µ =

(

∂H

∂N

)

S,P

.

Consider an isolated system at constant pressure. Process at constant pressure are

of special interest in chemistry since most of the chemical reactions occur under
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constant atmospheric pressure. In an isolated-isobaric system, δQ = 0 and P is

constant, thus

dE + PdV = 0 =⇒ d(E + PV ) = 0 =⇒ dH = 0.

In a spontaneous process of an adiabatic-isobaric system, the equilibrium corre-

sponds to the minimum of the enthalpy

dH = 0, H(S, P ) = Hmin.

1.6.3 Helmholtz free energy as a thermodynamic potential:

The Helmholtz potential (free energy) is defined as

F = E − TS

and differentially,

dF = dE − SdT − TdS =⇒ dF = −SdT − PdV + µdN

since dE = TdS − PdV + µdN . Thus, knowing F = F (T, V,N), S, P and µ could

be determined as

−S =

(

∂F

∂T

)

V,N

, −P =

(

∂F

∂V

)

T,N

, µ =

(

∂F

∂N

)

T,V

.

The Helmholtz potential is useful in defining the equilibrium of a non-isolated system

in contact with heat bath at constant temperature T . The system is interacting

with the heat bath through heat exchange only. Consider an arbitrary isothermal

transformation of this system from a state A to state B. By the second law , one

have
∫ B

A

dQ

T
≤ S(B)− S(A).

Since T is constant,
∆Q

T
≤ ∆S

where ∆Q is the amount of heat absorbed during the transformation and ∆S =

S(B)− S(A). Using the first law, the inequality could be written as

∆W ≤ −∆E + T∆S =⇒ ∆W ≤ −∆F
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where ∆W is the work done by the system. Thus, the equilibrium of an isothermal

system which does not perform work (mechanically isolated) always looks for a

minimum of Helmholtz potential. Irreversible process happen spontaneously, until

the minimum

dF = 0, F = Fmin

is reached.

1.6.4 Gibbs free energy as a thermodynamic potential:

The Gibb’s potential (free energy) is defined as

G = E − TS + PV = F + PV

or differentially

dG = −SdT + V dP + µdN

since E = TS − PV + µN for a system attached with heat bath as well as with

a bariostat. System exchanges heat and does some work due to volume expansion

at constant pressure. The thermodynamic variables can be obtained in terms of

G(P, T,N) as

−S =

(

∂G

∂T

)

P,N

, V =

(

∂G

∂P

)

T,N

, µ =

(

∂G

∂N

)

T,P

.

Notice that the chemical potential µ can be defined as Gibb’s free energy per particle.

Consider a system at constant pressure and temperature. For isothermal process,

∆W ≤ −∆F

as it is already seen. If the pressure remain constant ∆W = P∆V , then

P∆V +∆F ≤ 0 =⇒ ∆G ≤ 0.

Thus, a system kept at constant temperature and pressure, the Gibb’s free energy

never increases and the equilibrium state corresponds to minimum Gibb’s potential.

Irreversible spontaneous process in an isothermal isobaric system

dG = 0 G = Gmin
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are always achieved.

1.6.5 Grand potential as a thermodynamic potential:

The grand potential is defined as

Φ = E − TS − µN = F − µN = −PV

since E = TS − PV + µN . The system attached with heat bath as well as with

a particle reservoir. System exchanges heat with heat bath and exchanges particle

with the particle reservoir. Differentially the grand potential can be expressed as

dΦ = dE − TdS − SdT − µdN −Ndµ = −SdT − PdV −Ndµ

since dE = TdS−PdV + µdN . The thermodynamic variables are then obtained in

terms of Φ(V, T, µ) as

−S =

(

∂Φ

∂T

)

V,µ

, −P =

(

∂Φ

∂V

)

T,µ

, −N =

(

∂Φ

∂µ

)

T,V

.

Consider an isothermal system at constant chemical potential. For an isothermal

system

∆W ≤ −∆F

and ∆W = −µ∆N since µ is constant and the inequality leads to

∆F − µ∆N ≤ 0 =⇒ ∆Φ ≤ 0.

Thus, a system kept at constant temperature and chemical potential, the grand

potential never increase and the equilibrium state corresponds to minimum grand

potential. Irreversible spontaneous process in an isothermal system with constant

chemical potential correspond to

dΦ = 0 Φ = Φmin.

1.6.6 Maxwell relations for a fluid system:

A number of relations between the thermodynamic state variables can be obtained

since the thermodynamic potentials E,H, F and G (also Φ) are state functions and

have exact differentials.
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1. Form Internal Energy E:

dE = TdS − PdV =

(

∂E

∂S

)

V

dS +

(

∂E

∂V

)

S

dV.

Since

∂

∂V

(

∂E

∂S

)

=
∂

∂S

(

∂E

∂V

)

=⇒
(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

2. From enthalpy H :

dH = TdS + V dP =⇒
(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

3. From Helmholtz potential F :

dF = −SdT − PdV =⇒
(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

4. From Gibbs potential G:

dG = −SdT + V dP =⇒ −
(

∂S

∂P

)

T

=

(

∂V

∂T

)

P

1.7 Response functions for fluid systems

Definitions of the thermodynamic response functions will be given here.

1.7.1 Specific heats:

The specific heats CV and CP are measures of the heat absorption from a tempera-

ture stimulus. The definition of heat capacities are already given as follows:

CV =

(

∂E

∂T

)

V

= T

(

∂S

∂T

)

V

= −T
(

∂2F

∂T 2

)

V

and

CP =

(

∂E

∂T

)

P

+ P

(

∂V

∂T

)

P

= T

(

∂S

∂T

)

P

= −T
(

∂2G

∂T 2

)

P

.
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1.7.2 Compressibilities:

Compressibility κ is defined as

κ = − 1

V

(

∂V

∂P

)

.

Isothermal and adiabatic compressibilities are then defined accordingly

κT = − 1

V

(

∂V

∂P

)

T

= − 1

V

(

∂2G

∂P 2

)

T

,

and

κS = − 1

V

(

∂V

∂P

)

S

= − 1

V

(

∂2H

∂P 2

)

S

.

1.7.3 Coefficient of volume expansion:

The change of volume generally is made under constant pressure for the solid system.

The coefficient of volume expansion αP is defined as the change in volume of a system

for unit change in temperature at constant pressure per unit volume

αP =
1

V

(

∂V

∂T

)

P

=
1

V

(

∂2G

∂T∂P

)

.

1.7.4 Relations among response functions:

The response functions are not all independent of one another. It can be shown that

CP/CV = κT/κS.

Two more useful relations among them are

κT (CP − CV ) = TV α2 and CP (κT − κS) = TV α2.

1.8 Thermodynamics of a magnetic system

In order to study magnetic properties of matter one requires the expression for

the work of magnetizing a material. One needs to be careful in defining precisely

the system and the processes in order to calculate magnetic work done. Let us

assume that the effects of pressure and volume on a magnetic system is negligible.

The thermodynamic parameters of a magnetic system are going to be the external
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1.8 Thermodynamics of a magnetic system

magnetic induction B, total magnetization M and temperature T instead of P , V

and T of a fluid system. The first law of thermodynamics: the differential change

in internal energy E for a reversible change of state can be written in two different

but equivalent forms as

dE = TdS −MdB (1.1)

or

dE = TdS +BdM. (1.2)

The difference between between Eq.1.1 and Eq.1.2 is that the later one includes the

mutual filed energy but the first one does not. This particular issue is discussed in

many texts such as Statistical Physics by F. Mandl, Elementary Statistical Physics

by C. Kittle, and Introduction to Thermodynamics and thermostatics by H. B.

Callen. The internal energy in Eq.1.1 includes the potential energy of the magnetic

moments (spins) in the field and the lattice energy whereas in Eq.1.2 it includes

mutual field energy along with the spin and lattice energies. It is worth looking at

M. Barrett and A. Macdonald, Am. J. Phys. 67, 613 (1999) and G. Castellano, J.

Mag. Mag. Mat. 206, 146 (2003).

We will be using the second form of the first law dE = TdS + BdM and define

other state functions and thermodynamic potentials such as enthalpy H(N, S,B),

the Helmholtz free energy F (N,M, T ) and the Gibbs free energy G(N,B, T ). The

definitions of these thermodynamics state functions and differential change in a

reversible change of state are given by

H(N, S,B) = E −MB and dH = TdS −MdB

F (N,M, T ) = E − TS and dF = −SdT +BdM

G(N,B, T ) = E − TS −MB and dG = −SdT −MdB

(1.3)

where explicit N dependence is also avoided. If one wants to take into account of

number of particles there must be another term µdN in all differential forms of the

state functions. It can be noticed that the thermodynamic relations of a magnetic

system can be obtained from those in fluid system if V is replaced by −M and P is

replaced by B.

Note that if the other form of the first law dE = TdS −MdB in Eq.1.1 is used it

can be checked that the differential change in Helmholtz free energy would be given

by dF = −SdT −MdB same as Gibbs free energy given in Eq.1.3. The Helmholtz
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Chapter 1. Thermodynamics

free energy becomes F (B, T ) function of B and T instead of F (M,T ) function of

M and T . In many text books, F (B, T ) is used as free energy and the reader must

take a note that in this situation a different definition of magnetic work and energy

is used.

Now one can obtain all the thermodynamic parameters from the state functions

defined in Eqs.1.2 and 1.3 by taking appropriate derivatives as given below

T =

(

∂E

∂S

)

M

or T =

(

∂H

∂S

)

B

,

S = −
(

∂F

∂T

)

M

or S = −
(

∂G

∂T

)

B

,

B =

(

∂E

∂M

)

S

or B =

(

∂F

∂M

)

T

,

M = −
(

∂H

∂B

)

S

or M = −
(

∂G

∂B

)

T

.

(1.4)

1.8.1 Maxwell relations for a magnetic system:

A number of relations between the thermodynamic state variables can be obtained

since the thermodynamic potentials E,H, F and G (also Φ) are state functions and

have exact differentials.

1. Form Internal Energy E:

dE = TdS +BdM =⇒
(

∂T

∂M

)

S

=

(

∂B

∂S

)

M

2. From enthalpy H :

dH = TdS −MdB =⇒
(

∂T

∂B

)

S

= −
(

∂M

∂S

)

B

3. From Helmholtz potential F :

dF = −SdT +BdM =⇒
(

∂S

∂M

)

T

= −
(

∂B

∂T

)

M

4. From Gibbs potential G:

dG = −SdT −MdB =⇒
(

∂S

∂B

)

T

=

(

∂M

∂T

)

B
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1.9 Response functions for a magnetic system

1.9 Response functions for a magnetic system

Definitions of the thermodynamic response functions will be given here.

1.9.1 Specific heats:

The specific heats CM and CB are the measures of the heat absorption from a

temperature stimulus at constant magnetization and constant external magnetic

field respectively. The definition of heat capacities are :

CM = T

(

∂S

∂T

)

M

= −T
(

∂2F

∂T 2

)

M

and

CB = T

(

∂S

∂T

)

P

= −T
(

∂2G

∂T 2

)

B

.

1.9.2 Susceptibilities:

In case of magnetic systems, instead of isothermal and adiabatic compressibilities

one have the isothermal and the adiabatic magnetic susceptibilities

χT =

(

∂M

∂B

)

T

= −
(

∂2G

∂B2

)

T

,

and

χS =

(

∂M

∂B

)

S

= −
(

∂2H

∂B2

)

S

where M is the total magnetization and B is the external magnetic field. Note that

the normalizing factor of 1/V is absent here.

1.9.3 Coefficient αB:

The change of magnetization M with respect to temperature T under constant

external magnetic field αB, is defined as

αB =

(

∂M

∂T

)

B

=

(

∂2G

∂T∂B

)

.
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Chapter 1. Thermodynamics

1.9.4 Relations among response functions:

The response functions are not all independent of one another. It can be shown that

CB/CM = χT/χS.

Two more useful relations among them are

χT (CB − CM) = Tα2
B and CB(χT − χS) = Tα2

B.

1.10 Some applications

Let us apply the principles of thermodynamics developed from phenomenology only

to few simple physical situations.

1.10.1 Heat capacities of materials:

The difference between heat capacities is given by

CP − CV = TV α2/κT

where α = 1
V

(

∂V
∂T

)

P
is the volume expansion coefficient and κT = − 1

V

(

∂V
∂P

)

T
is the

isothermal compressibility. Using this relation, the difference between heat capac-

ities of an ideal gas could be easily obtained. For one mole of an ideal gas, the

equation of state is PV = RT where R is the universal gas constant. Thus,

α =
1

V

(

∂V

∂T

)

P

=
1

V

R

P
=

1

T

and

κT = − 1

V

(

∂V

∂P

)

T

= − 1

V

(

−V
P

)

=
1

P
.

Therefore the difference in heat capacities is given by

CP − CV = TV

(

1

T

)2
1

1/P
=
PV

T
= R

is a well known equation.

As T → 0, by third law of thermodynamics, the entropy S → S0 = 0 becomes

independent of all parameters like pressure, volume and temperature. Therefore, in
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1.10 Some applications

the limit T → 0 the heat capacities also tend to zero,

CV = T

(

∂S

∂T

)

V

→ 0 and CP = T

(

∂S

∂T

)

P

→ 0

This is because of the fact that as T → 0, the system tends to settle down in its non-

degenerate ground state. The mean energy of the system then become essentially

equal to its ground state energy, and no further reduction of temperature can result

in a further reduction of mean energy.

Not only the individual heat capacity goes to zero but also their difference goes

to zero as T → 0. Because, the volume expansion coefficient α also goes to zero

α =
1

V

(

∂V

∂T

)

P

= −
(

∂S

∂P

)

T

→ 0.

However, the compressibility κT , a purely mechanical property, remains well-defined

and finite as T → 0. Thus,

as T → 0 CP − CV → 0.

This is not in contradiction to the ideal gas result CP −CV = R because as T → 0,

the system approaches its ground state and quantum mechanical effects become very

important. Hence the classical ideal gas equation PV = RT is no longer valid as

T → 0.

1.10.2 Gibbs paradox:

An isolated system with two parts of equal volume V each contains N number of

molecules of the same monatomic perfect gas at the same temperature T , pressure

P . Initially, the two parts were separated by a membrane and then the membrane

was removed. The system is allowed to equilibrate. The change in entropy is given

by

∆S =

∫

δQ

T
=

1

T

∫

δQ.

From first law, for a perfect gas dE(T ) = δQ+δW = 0 and thus δQ = −δW = PdV .

The volume changes from V to 2V for the each part. Therefore,

∆S =
1

T

∫

PdV = NkB

∫ 2V

V

dV

V
+NkB

∫ 2V

V

dV

V
= 2NkB ln 2 > 0.
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Chapter 1. Thermodynamics

The entropy of the system then may increase indefinitely by putting more and more

membranes and removing them. However, the process is reversible. By putting back

the membranes one would recover the initial state. According to Clausius theorem,

the change in entropy must be ∆S = 0 in a reversible process. This discrepancy is

known as Gibb’s paradox. The paradox would be resolved only by applying quantum

statistical mechanics. The same problem will be discussed again in the next section

again.

1.10.3 Radiation:

According to electromagnetic theory, the pressure P of an isotropic radiation field

is equal to 1/3 of the energy density:

P = u(T )/3 = U(T )/3V

where V is the volume of the cavity, U is the total energy. Using the thermodynamic

principles, one could obtain Stefan’s law: u = aT 4, where a is a constant. By the

second law dU = TdS − PdV , thus

(

∂U

∂V

)

T

= T

(

∂S

∂V

)

T

− P =⇒
(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P

since
(

∂S
∂V

)

T
=
(

∂P
∂T

)

V
by Maxwell equation. Since U = u(T )V ,

(

∂U

∂V

)

T

= u(T ) and

(

∂P

∂T

)

V

=
1

3

du

dT
.

Thus,

u(T ) =
T

3

du

dT
− 1

3
u =⇒ T

du

dT
= 4u =⇒ u = aT 4

where a is constant of integration.

1.10.4 Paramagnet:

For a paramagnetic system, if the temperature T is held constant and the magnetic

field B is changed to B +∆B, the change in entropy is found as

∆S = −CB∆B/T 2
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where C is a material dependent constant. The rate of change of S with the external

field B at a fixed temperature is then given by

(

∂S

∂B

)

T

= −CB
T 2

.

Since the elementary Gibb’s potential for a magnetic system is given by

dG = −SdT −MdB =⇒
(

∂S

∂B

)

T

=

(

∂M

∂T

)

B

and one has
(

∂M

∂T

)

B

= −CB
T 2

=⇒ M =
CB

T
.

This is the Cure law.

Thermodynamic principles are applied to different physical situations and useful

relations among the thermodynamic parameters are obtained. However, no micro-

scopic understanding has been achieved. Although motion of atom or molecules are

completely ignored in these calculations, a rich mathematical structure has come

out from the phenomenology. The microscopic theory will be developed in the next

section, Statistical Mechanics, and will be applied to the similar problems in order

to understand the same problems from the atomic or molecular point of view.
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Problems:

1.1 Experimentally one finds that for a rubber band

(

∂τ

∂L

)

T

=
aT

L0

[

1 + 2

(

L0

L

)3
]

(

∂τ

∂T

)

L

=
aL

L0

[

1−
(

L0

L

)3
]

where τ is the tension, a = 1.0 × 103 dyne/K, and L0 = 0.5m is the length

of the band when no tension is applied. The mass of the rubber band is held

fixed.

(a) Compute (∂L/∂T )τ and discuss its physical meaning.

(b) Find the equation of state and show that dτ is an exact differential.

(c) Assume that heat capacity at constant length is CL = 1.0 J/K. Find

the work necessary to stretch the band reversibly and adiabatically to a

length 1 m. Assume that when no tension is applied, the temperature of

the band is T = 290 K. What is the change in temperature?

1.2 For pure water in contact with air at normal pressure, the surface tension has a

constant value γ0 at all temperatures for which the water is a liquid. If certain

surfactant molecules, such as pentadecylic acid, are added to the water, they

remain on the free surface and alter the surface tension. For water of area A

containing N surfactant molecules, it was found experimentally

(

∂γ

∂A

)

T

=
NkBT

(A− b)2
− 2a

A

(

N

A

)2

(

∂T

∂γ

)

A

= −A− b

NkB

where kB is Boltzmann constant and a and b are constants. Find an expression

for γ(A, T ) that reduces to the result for pure water when N = 0.

1.3 Blackbody radiation in a box of volume V and at temperature T has inter-

nal energy U = aV T 4 and pressure P = (1/3)aT 4, where a is the Stefan-

Boltzmann constant.
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(a) What is the fundamental equation for the blackbody radiation (the en-

tropy)?

(b) Compute the chemical potential.

1.4 Two vessels, insulated from the outside world, one of volume V1 and the other

of volume V2 , contain equal numbers N of the same ideal gas. The gas in

each vessel is originally at temperature Ti. The vessels are then connected and

allowed to reach equilibrium in such a way that the combined vessel is also

insulated from the outside world. The final volume is V = V1+V2. What is the

maximum work, δWfree, that can be obtained by connecting these insulated

vessels? Express your answer in terms of Ti, V1, V2, and N .

1.5 Compute the Helmholtz free energy F for a van der Waals gas. The equation

of state is
(

P + a
n2

V 2

)

(V − nb) = nRT

where a and b are constants which depend on the type of gas and n is the

number of moles. Assume that heat capacity is CV,n = (3/2)nR.

1.6 Compute the entropy S, enthalpy H , Helmholtz free energy F , and Gibbs free

energy G for a paramagnetic substance and write them explicitly in terms of

their natural variables if possible. Assume that mechanical equation of state

is m = (C/T )B and the molar heat capacity at constant magnetization cm is

a constant, where m is the molar magnetization, B is the magnetic field, C is

a constant, and T is the temperature.

1.7 Compute the molar heat capacity cP , the compressibilities, κT and κS , and

the thermal expansivity αP of a monoatomic van der Waals gas. Start from

the fact that the mechanical equation of state is

P =
RT

v − b
− a

v2

and the molar heat capacity is cv = 3R/2, where v = V/n is the molar volume.

1.8 Compute the heat capacity at constant magnetic field CB,n, the susceptibilities

χT,n and χS,n, and the thermal expansivity αB,n for a magnetic system, given

that the mechanical equation of state is

M =
nCB

T
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and the heat capacity CM,n = nc, where M is the magnetization, B is the

magnetic field, n is the number of moles, c is the molar heat capacity, and T

is the temperature.

1.9 Show that for a fluid system,

CP − CV = Tα2
P/κT and CP/CV = κT /κS

where αP = (1/V )(∂V/∂T )P .

1.10 Show that for a magnetic system,

CB − CM = Tα2
B/χT and χT − χS = Tα2

B/CB

where αB = (∂M/∂T )B .
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Statistical Mechanics
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2.1 Introduction

The properties of thermodynamic, i.e., macroscopic systems are needed to be un-

derstood form microscopic point of view. Statistical mechanics will be used as a

tool for this purpose. The basis of the subject is laid on the dynamical behaviour

of the microscopic constituents, i.e., atoms or molecules of the system. Theory of

statistical mechanics is thus made up of mathematical statistics and classical Hamil-

tonian dynamics or quantum mechanics. The dynamics of a physical system can be

represented by a set of quantum states and the thermodynamics of the system can

be determined by the multiplicity of these states. On can write the equation of mo-

tion of any particle of these large systems quantum mechanically accurately but the

complexity of the system containing many particles is enormous and it leads to the

impossibility of having a solution. The difficulties involved is just not quantitative.

The complexity of the interaction may give rise to unexpected qualitative features

in the behaviour of a macroscopic system. The fundamental connection between the

microscopic and the macroscopic description of a system is established by investigat-

ing the conditions of equilibrium between two physical systems in thermodynamic

contact. One, in principle, could work in the frame work of quantum mechanics and

develop a quantum statistical mechanical theory of the macroscopic properties. The

classical results can then be obtained as a limiting situation. However, the subject of

classical statistical mechanics and quantum statistical mechanics will be developed

independently here and finally the connection will be made by taking the classical

limit of the quantum results.

2.2 Basic Concepts of Statistical Mechanics

Consider a physical system composed ofN identical particles confined in a volume V .

For a macroscopic system, N is of the order of Avogadro number NA ≈ 6.022×1023

per mole. In this view, all the analysis in statistical mechanics are carried out in

the so-called thermodynamic limit. It is defined as: both number of particles N and

volume V of the system tends to infinity whereas the density of particles ρ = N/V

remains finite.

N → ∞, V → ∞, ρ = N/V = finite.

In this limit, the extensive properties of the system become directly proportional to

the size of the system (N or V ), while the intensive properties become independent

of the size of the system. The particle density becomes an important parameter for
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2.2 Basic Concepts of Statistical Mechanics

all physical properties of the system.

In order to develop a microscopic theory of a macroscopic system, it is necessary to

specify the state of micro-particles, atoms or molecules as a first step. Next is to

construct the macro-state from the micro-states of N number of particles when N is

very large. Finally, one needs to extract the macroscopic properties in terms of the

micro-states of a macroscopic system. In this section, all these essential definitions

will be given.

2.2.1 Specification of states:

The specification of the state of a particle depends on the nature of the particle, i.e.,

whether the particle’s dynamics is described by classical mechanics or by quantum

mechanics. The dynamics of a classical system is determined by its Hamiltonian

H(p, q) where q and P are the generalized position and momentum conjugate vari-

ables. The motion of a particle is described by the canonical Hamilton’s equation

of motion

q̇i =
∂H(p, q)

∂pi
and ṗi = −∂H(p, q)

∂qi
; i = 1, 2, · · · , N

The state of a single particle at any time is then given by the pair of conjugate

variables (qi, pi). The state of a system composed of N particles is then completely

and uniquely defined by 3N canonical coordinates q1, q2, · · · , q3N and 3N canonical

momentum p1, p2, · · · , p3N . These 6N variables constitute a 6N -dimensional Γ-space

or phase space of the system and each point of the phase space represents a state

of the system. Each single particle constitutes a 6-dimensional µ-space. Γ-space is

evidently built up of N such 6-dimensional µ-space of each particle. The locus of

all the points in Γ-space satisfying the condition H(p, q) = E, total energy of the

system, defines a surface called energy surface. Specification of states of quantum

particles will be discussed later.

2.2.2 Enumeration of microstates:

It is important to enumerate the number of microstates for a given macrostate

(N, V, E) of a system. For a classical particle, the microstate is specified by a phase

point. Consider an infinitesimal change in the position and momentum coordinates

in the phase space. The phase point of this particle then under go a small displace-
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ment in the phase space and the microscopic state of the system will be modified.

However, if the change in the microstate is so small that it is not measurable by the

most accurate experiment, then it can be assumed that there is no change in the

macroscopic state of the system. Thus, the state of a system is given by a small

volume element δΩ of the Γ-phase space. If δqδp = h, then

δΩ = δq1δq2 · · · δq3Nδp1δp2 · · · δp3N = h3N .

By Heisenberg’s uncertainty principle in quantum mechanics it can be shown that

h is the Planck’s constant. Thus, the number of states of a system of N particles of

energy ≤ E is given by

Γ =
1

h3N

∫

dΩ =
1

h3N

∫ ∫

d3Nqd3Np.

The number of microstates is then proportional to the volume of the phase space.

The enumeration of number of microstates however depends on the distinguishable

and indistinguishable nature of the particles. If the constituent particles are dis-

tinguishable, the two microstates corresponding to the interchange of two particles

of different energy are distinct microstates. On the other hand, if the constituent

particles are indistinguishable, these two microstates are not distinct microstates.

Thus, for a system of N indistinguishable, identical classical particles having differ-

ent energy states, the number of microstates is then given by

Γ =
1

h3NN !

∫ ∫

d3Nqd3Np

as suggested by Gibbs.

Consider a system of N particles of total energy E and corresponds to a macrostate

(N, V, E). If the particles are distributed among the different energy levels as, ni

particles in the energy level ǫi, the following conditions has to be satisfied

N =
∑

i

ni and E =
∑

i

niǫi.
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The total number of possible distributions of N such particles is then given by

N !
∏

ni!
.

If the particles are distinguishable, then all these permutations would lead to distinct

microstate whereas if the particles are indistinguishable, these permutations must

be regarded as one and the same microstate.

2.2.3 Equal a priori probability:

As it is already seen that for a given macrostate (N, V, E), there is a large number

of possible microstates of the system. In case of classical non-interacting system,

the total energy E can be distributed among the N particles in a large number of

different ways and each of these different ways corresponds to a microstate. In case of

a quantum system, the various different microstates are identified as the independent

solutions Ψ(r1, r2, · · · , rN) of the Schrödinger equation of the system, corresponding

to an eigenvalue E. In any case, to a given macrostate of the system there exists a

large number of microstates and it is assumed in statistical mechanics that at any

time t the system is equally likely to be in any one of these microstates. This is

generally referred as the postulate of equal a priori probability for all microstates of

a given macrostate of the system.

2.2.4 Statistical ensembles:

The microstate of a macroscopic system is specified by a point in 6N -dimensional

phase space where N is of the order of Avogadro number (1023). At any time t,

the system is equally likely to be in any one of the large number of microstates

corresponding to a given macrostate (N, V, E). As the dynamical system evolves

with time, the system moves from one microstate to another. After a sufficiently

long time, the system passes through a large number of microstates. The behaviour

of the system then can be obtained as averaged over those microstates through which

the system passes. Thus, in a single instant of time, one could consider a collection

of large number of replicas (mental copies) of the original system characterized by

the same macrostate but could be in any of the possible microstates to obtain the

average behaviour of the system. This collection of large number of copies of the

same system is called an ensemble. It is expected that the ensemble averaged

behaviour of a system would be identical with the time averaged behaviour of the
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given system.

Since the values of (q, p) at any instant are different for a system of an ensemble,

they are represented by different points in the phase space. Thus, the ensemble will

be represented by a cloud of phase points in the phase space. As time passes, every

member of the ensemble undergoes a continuous change in microstates and accord-

ingly the system moves from one place to another on the phase space describing a

phase trajectory. The density of the cloud of phase points at a particular place then

may vary with time or at a given time the density may vary place to place. It must

be emphasized here that the systems of an ensemble are independent systems, that

is, there is no interaction between them and hence the trajectories do not intersect.

2.2.5 Phase point density:

Since a phase point corresponds to a microstate of a system and its dynamics is

described by the phase trajectory, the density of phase points ρ(p, q) is then deter-

mining the number of microstates per unit volume, that is, the probability to find

a state around a phase point (p, q). The phase point density ρ(p, q) is given by

ρ(p, q) =
Number of states

Volume element
.

At any time t, the number of representative points in the volume element d3Nqd3Np

around the point (p, q) of the phase space is then given by

ρ(p, q)d3Nqd3Np.

The density function ρ(p, q) then represents the manner in which the members of

the ensemble are distributed over all possible microstate at different instant of time.

2.2.6 Statistical average and mean values:

Consider any physical property of the system X(p, q), which may be different in

different microstates for a system. The macroscopic value of X must be the average

of it over all possible microstates corresponding to a given macrostate. The ensemble

average or the statistical average 〈X〉 of the physical quantity X at a given instant

of time, is defined as

〈X〉 =
∫

X(p, q)ρ(p, q)d3Nqd3Np
∫

ρ(p, q)d3Nqd3Np
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where ρ(p, q) is the density of phase points. Note that the integration is over the

whole phase space. However, it is only the populated region of phase space that

really contribute.

The mean value X̄ of the physical quantity X depends how it evolves with time t.

In a sufficiently long time, the phase trajectory passes through all possible phase

points. If the duration of time is T , the mean value is defined as

X̄ = lim
T→∞

1

T

∫ T

0

X(t)dt.

The statistical average 〈X〉 and the mean value X̄ are equivalent. This is known as

ergodic hypothesis.

2.2.7 Condition of Equilibrium:

By Liouville’s theorem, the total time derivative of the phase point density ρ(p, q),

in absence of any source and sink in the phase space, is given by

dρ

dt
=
∂ρ

∂t
+ {ρ,H} = 0

where

{ρ,H} =

3N
∑

i=1

(

∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

)

is known as Poisson bracket of the density function ρ and the Hamiltonian H of

the system. Thus, the cloud of phase points moves in the phase space like an

incompressible fluid.

The ensemble is considered to be in statistical equilibrium if ρ(p, q) has no explicit

dependence on time at all points in the phase space, i.e.,

∂ρ

∂t
= 0.

Under the condition of equilibrium, therefore,

{ρ,H} =
3N
∑

i=1

(

∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

)

= 0
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and it will be satisfied only if ρ is independent of P and q. That is

ρ(p, q) = constant

which means that the representative points are distributed uniformly over the phase

space. The condition of statistical equilibrium then requires no explicit time depen-

dence of the phase point density ρ(p, q) as well as independent of the coordinates

(p, q).

2.3 Ensembles and Thermodynamic quantities

Like thermodynamic systems, statistical ensembles are also classified in three differ-

ent types. The classification of ensembles depends on the type of interaction of the

system with the surroundings. The interactions of the systems with the surround-

ings are either through energy exchange or through energy and matter (number

particles) exchange. In an isolated system, neither energy nor matter is exchanged

and the corresponding ensemble is known as microcanonical ensemble. A system

exchanging only energy (not matter) with its surroundings is described by canonical

ensemble. If both energy and matter are exchanged between the system and the

surroundings the corresponding ensemble is called a grand canonical ensemble. The

equilibrium thermodynamic properties of a system can be calculated using any en-

semble formalism in statistical mechanics. However, choice of a specific ensemble to

calculate physical properties of a specific system always reduces the mathematical

task enormously.

The ensemble theory will be developed for each ensemble to calculate thermody-

namic properties of a given system.

2.3.1 The microcanonical ensemble:

In this ensemble, the macrostate is defined by the number molecules N , the volume

V and the energy E. However, for calculation purpose, a small range of energy E

to E+ δE (with δE → 0) variation is considered instead of a sharply defined energy

value E. The systems of the ensemble may be in any one of a large number of

microstates between E and E + δE. In the phase space, the representative points
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will lie with in a hypershell defined by the condition

E ≤ H(p, q) ≤ E + δE.

The phase space volume Ω(E,N, V ) of the enclosed shell is given by

Ω(E,N, V ) =

∫ E+δE

E

d3Nqd3Np.

In the microcanonical ensemble, the density function ρ(q, p) is given by

ρ(q, p) =

{

C if E ≤ Ex ≤ E + δE

0 otherwise

where C is a constant and can be determined from the normalization condition
∫

ρ(q, p)d3Nqd3Np = 1 between E and E+δE. The number of accessible microstates

is then proportional to the phase space volume Ω enclosed within the shell.

2.3.1.1 Thermodynamics in Microcanonical Ensemble:

Consider two physical systems, A and B as shown in Fig.2.1. The systems are

independently in thermodynamic equilibrium at the macrostates (N1, V1, E1) and

(N2, V2, E2) respectively. The number of microscopic states of the corresponding

systems are ΩA(N1, V1, E1) and ΩB(N2, V2, E2). Now the two systems are kept in

thermal contact and the combined system AB ≡ A+B remain an isolated system. In

thermal contact, only energy exchange between the two systems is possible keeping

the other thermodynamic parameters (N or V ) fixed. Thus, the energy of the

A B

(E  ,V  ,N  )1 1 1 (E  ,V  ,N  )2 2 2

Figure 2.1: Two physical systems A and B are in thermal contact.

combined system E0 is given by

E0 = E1 + E2 = constant.
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At any time t, the subsystem A is equally likely in any of the microstates ΩA(E1)

and the subsystem B is equally likely if any of the microstate ΩB(E2). The combined

system AB is then in any of the microstate ΩAB(E1, E2) given by

ΩAB(E1, E2) = ΩA(E1)ΩB(E2) = ΩA(E1)ΩB(E0 − E1) = ΩAB(E0, E1)

At equilibrium, the value of ΩAB(E0, E1) will be maximum. A system evolves

naturally in a direction that enables it to assume an ever increasing number of

macrostates. If Ē1 is the equilibrium value of E1 and Ē2 is that of E2,

ΩB(E2)

(

∂ΩA

∂E1

)

Ē1

+ ΩA(E1)

(

∂ΩB

∂E2

)

Ē2

(

∂E2

∂E1

)

= 0.

Since ∂E2/∂E1 = −1, the above equation reduces to

1

ΩA

(

∂ΩA

∂E1

)

Ē1

=
1

ΩB

(

∂ΩB

∂E2

)

Ē2

=⇒
(

∂ ln ΩA

∂E1

)

Ē1

=

(

∂ ln ΩB

∂E2

)

Ē2

.

The condition of equilibrium is then equality of two parameters β1 and β2 where

β =
∂ ln Ω(N, V, E)

∂E
.

From thermodynamics, it is already known that

kBT =
1

β
and

1

T
=
∂S

∂E

where T is the temperature, kB is the Boltzmann constant and S is the entropy. It

suggests that the entropy of the system is given by

S = kB ln Ω.

This is the Boltzmann definition of entropy. Since, in a natural process the equi-

librium corresponds to maximum Ω then the equilibrium corresponds to maximum

entropy S and one gets the second law of thermodynamics. The condition of equi-

librium β1 = β2 also reduces to T1 = T2 as in thermodynamics. In case of movable

wall or penetrable wall the equilibrium conditions could be obtained as P1 = P2 and

µ1 = µ2 respectively by taking derivative of Ω(E,N, V ) with respect to volume V

and number of particles N . Notice that as T → 0, the system is going to be in its

ground state and the value of Ω is going to be 1. Consequently, the entropy S → 0,
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the third law of thermodynamics.

Example: The ideal gas

Consider an ideal gas of N molecules enclosed in a volume V at temperature T . The

ideal gas law, PV = NkBT , now should be derivable from statistical mechanics. The

Hamiltonian of the system is given by

H =
1

2m

N
∑

i

p2i .

The number of accessible states Ω is given by the phase volume as

Ω =
1

h3N

∫

d3q1 · · · d3qNd3p1 · · ·d3pN .

The integration over q will give V N . If R =
√
2mE, then

Ω =

(

V

h3

)N

Σ3N (R)

where Σ3N (R) is the volume of a sphere of radius R in 3N dimensional momentum

space. It can be shown that

Ω =
π3N/2

((N/2)!)3

(

V

h3

)N

(2mE)3N/2.

Using Stirling’s formula, lnn! = n lnn− n, one could obtain the entropy as

S = kB ln Ω = NkB ln

[

V

(

4πmE

3h2N

)3/2
]

+
3

2
NkB

or

E =

(

3h2

4πm

)

N

V 2/3
exp

(

2

3

S

NkB
− 1

)

.

The temperature and pressure of the system are obtained as

T =

(

∂E

∂S

)

V

=
2

3

E

NkB
, P = −

(

∂E

∂V

)

S

=
2

3

E

V

Combining these two, one could easily verify that

PV = NkBT or PV =
2

3
E.
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Gibbs paradox:

The entropy for ideal gas is given by

S = NkB ln

[

V

(

4πmE

3h2N

)3/2
]

+
3

2
NkB

= NkB ln
(

V E3/2
)

+NS0, S0 =
3kB
2

(

1 + ln
4πm

3h2

)

.

Consider an ideal gas of same density (ρ1 = ρ2) in two chambers at a common

temperature T . If the separation between the two chambers is now removed, the

change in entropy ∆S will be

∆S = kB

(

N1 ln
V

V1
+N2 ln

V

V2

)

> 0

where V = V1+V2 is the total volume of the system. For N1 = N2 and V1 = V2, the

change in entropy is ∆S = 2NkB ln 2. However, the change in entropy ∆S should

be zero in this situation because the process is reversible. Thus, the Gibb’s paradox

is not yet resolved even after calculating the entropy from statistical mechanics.

Let us calculate the number of accessible states by

Ω =
1

h3NN !

∫

d3Nqd3Np

whereN ! in the denominator takes care of the indistinguishability of the gas molecules.

Correspondingly, the value of entropy will be now

S = NkB ln
(

V E3/2
)

+NS0 −NkB lnN +NkB

= NkB ln

(

V

N
E3/2

)

+ Constant.

Since, V/N and E both remains unchanged in this process, the change in entropy

will be

∆S = 0.

Gibb’s paradox is then resolved. The origin of Gibb’s paradox is associated with the

indistinguishable property of the particles which is a property of quantum particles.
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2.3.2 The canonical ensemble:

In a micro-canonical ensemble, a microstate was defined by a fixed number of par-

ticles N , a fixed volume V and a fixed energy E. However, the total energy E of

a system is generally not measured. Furthermore, it is difficult to keep the total

energy fixed. Instead of energy E, temperature T is a better alternate parameter

of the system which is directly observable and controllable. Let us consider an en-

semble whose microstate is defined by N , V and T . Such an ensemble is known as

canonical ensemble. In the canonical ensemble, the energy E can vary from zero to

infinity. One then needs to find out the probability Pr that a system in the ensemble

is in one of the states characterized by Er.

Consider a system A in contact with a large heat reservoir B at temperature T as

shown in Fig.2.2. At equilibrium, the system will have the same temperature T of

the reservoir. However, the energy could lie between 0 and E0, the total energy of

the system and the reservoir. The total energy E0 is then given by

Er + E ′
r = E0 = constant, and

Er

E0
≪ 1.

For a given state r of the system A, the reservoir B can still be in any one of the

BA

r(E  ,T)r (E  ,T)/

Figure 2.2: A given system A immersed in a heat reservoir B in equilibrium.

large number of states Ω′(E ′
r) compatible with the energy value E ′

r. If the number

of states available to the reservoir is large, the probability of the reservoir in the

state E ′
r is also going to be large and correspondingly the probability to find the

system in Er. Since all the states are equally likely to occur, the probability Pr that

a system in a state r is directly proportional to Ω′(E ′
r)

Pr ∝ Ω′(E ′
r) = Ω′(E0 − Er)

or

Pr = CΩ′(E0 −Er) =⇒ lnPr = lnC + lnΩ′(E0 − Er).
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Since Er/E0 ≪ 1, lnΩ′(E0−Er) can be expanded in a Taylor series around Er = E0.

Thus,

lnΩ′(E0 − Er) = lnΩ′(E0) +
(

∂ ln Ω′

∂E ′

)

E′=E0

(E ′
r − E0) + · · ·

≈ constant− β ′Er.

where β = ∂ ln Ω/∂E, and in equilibrium β ′ = β. The probability Pr is then given

by

Pr ∝ exp(−βEr)

by normalizing

Pr =
exp(−βEr)

∑

r exp(−βEr)
, since

∑

r

Pr = 1

where the sum is over all possible states of the system A. The numerator exp(−βEr)

is called the Boltzmann factor and the denominator Z =
∑

r exp(−βEr) is called

the canonical partition function.

The partition function or sum over states Z is a function of temperature T naturally.

It also depends on the number of particle N and volume V through the energy E.

In most physical systems, the energy levels are degenerate, i.e., a group of states gr

in number have the same energy Er. In these situations, the canonical probability

distribution and the partition function are given by

Pr =
gr exp(−βEr)

∑

r gr exp(−βEr)
, and Z(N, V, T ) =

∑

r

gr exp(−βEr).

In the thermodynamic limit N → ∞ and V → ∞, the consecutive energy levels

are very close. In a small width of energy E to E + dE, there lies a large number

of states and the energy E can be considered as continuous. In these cases, the

probability to find a state between E and E + dE is then given by

P (E)dE =
exp(−βE)g(E)dE

∫∞

0
exp(−βE)g(E)dE

and the corresponding partition function is given by

Z =

∫ ∞

0

exp(−βE)g(E)dE.
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2.3.2.1 Thermodynamics in Canonical Ensemble:

Consider the canonical distribution function Pr for a system of non-degenerate dis-

crete energy levels

Pr =
exp(−βEr)

∑

r exp(−βEr)
.

The average of a physical quantity X is then

〈X〉 =
∑

r

XrPr =

∑

rXr exp(−βEr)
∑

r exp(−βEr)
.

According to the above definition, the mean energy of the system 〈E〉 is given by

〈E〉 = E =

∑

r Er exp(−βEr)
∑

r exp(−βEr)
= − ∂

∂β
ln{
∑

r

e−βEr} = −∂ lnZ
∂β

= − 1

Z

∂Z

∂β
.

From thermodynamics one knows that

E = F + TS and S = −
(

∂F

∂T

)

N,V

.

Rewriting E in terms of F one has

E = F − T

(

∂F

∂T

)

N,V

= −T 2

[

∂

∂T

(

F

T

)]

N,V

=
∂(F/T )

∂(1/T )
=
∂(F/kBT )

∂(1/kBT )
.

Comparing the thermodynamic and statistical definitions of the mean energy one

finds

F = −kBT lnZ and β =
1

kBT
.

In the case of a thermodynamic system in equilibrium with a heat reservoir, all

thermodynamic quantities are different derivatives of the Helmholtz free energy F .

Thus, knowing partition function as well as F from statistical mechanics, one could

in principle calculate all thermodynamic quantities statistical mechanically. For

example: entropy S is given by

S = −
(

∂F
∂T

)

N,V
= ∂
∂T

(kBT lnZ) = kB lnZ + kBT
∂ lnZ
∂T

= kB lnZ + 1
T

(

−∂ lnZ
∂β

)

= kB(lnZ + βE).
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The pressure and chemical potential are given by

P = −
(

∂F

∂V

)

N,T

= kBT
∂ lnZ

∂V
and µ =

(

∂F

∂N

)

V,T

= −kBT
∂ lnZ

∂N
.

Since we will be using these relations frequently, we present here different derivatives

of the Helmholtz free energy F (N, V, T ) with respect to its parameters for a fluid

system at constant volume in the following flowchart.

Z(N, V, T ) = 1
h3NN !

∫

e−βHd3Nqd3Np

F (N, V, T ) = −kBT lnZ(N, V, T )

F = E − TS

dF = −SdT − PdV + µdN

Entropy

S = −
(

∂F
∂T

)

V,N

Pressure

P = −
(

∂F
∂V

)

T,N

Chemical Potential

µ =
(

∂F
∂N

)

T,V

2.3.2.2 Specific Heat as Energy Fluctuation:

In statistical mechanics, specific heat is nothing but fluctuation in energy. The

fluctuation in energy is defined as

〈(∆E)2〉 = 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2.

Let us calculate the average of squared energy:

〈E2〉 =

∑

s

E2
s exp(−βEs)

∑

s

exp(−βEs)
= 1
Z

∑

s

E2
s exp(−βEs) =

1

Z

∂2Z

∂β2

= ∂
∂β

(

1
Z
∂Z
∂β

)

+ 1
Z2

(

∂Z
∂β

)2

= −∂〈E〉
∂β

+ 〈E〉2
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since 〈E〉 = −(1/Z)(∂Z/∂β). Thus the fluctuation in energy is given by

〈(∆E)2〉 = 〈E2〉 − 〈E〉2 = −∂〈E〉
∂β

= −
(

∂E

∂T

)(

∂T

∂β

)

= kBT
2CV

where β = 1/kBT .

2.3.2.3 The equipartition theorem:

The equipartition theorem states that each square term in the Hamiltonian con-

tributes kBT/2 amount of energy to the free energy of a system. In statistical

mechanics, one then needs to calculate the mean energy per degrees of freedom.

Consider a system with a Hamiltonian

H(p, q) = H0 +

f
∑

i=1

ap2

where a = 1/2m and f is the number of degrees of freedom and equal to the number

of square terms in the Hamiltonian here. The mean energy in one degree of freedom

is given by

〈ǫi〉 = 〈ap2i 〉 =

∫ +∞

−∞

ap2i exp(−βH0 − βap2i )dq1 · · ·dqfdp1 · · · dpf
∫ +∞

−∞

exp(−βH0 − βap2i )dq1 · · · dqfdp1 · · · dpf

=

∫ +∞

−∞

ap2i exp(−βap2i )dpi
∫ +∞

−∞

exp(−βap2i )dpi
= − ∂

∂β
ln
(

∫ +∞

−∞
e−βap

2
i dpi

)

= − ∂
∂β

ln
(

β−1/2
∫ +∞

−∞
e−ay

2
dy
)

, y =
√
βpi

= 1
2β

= 1
2kBT.

Thus, the total energy of the system is

E =
f

2
kBT.

The theorem is then proved by statistical mechanics.

Let us consider an example of 3-dimensional solid whose atoms could be considered

as independent localized harmonic oscillators, oscillating about their mean positions.
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The Hamiltonian of the solid can be written as

H =

3N
∑

i=1

p2i
2m

+
1

2
kq2i

where k is the strength of the harmonic potential. The system has 3N degrees of

freedom, however, there are 6N square terms in this Hamiltonian. Thus, the mean

energy of the solid is given by

E = 6N × 1

2
kBT = 3NkBT = 3RT.

the specific heat of the solid CV is then given by

CV =

(

∂E

∂T

)

V

= 3R.

This is known as Dulong-Petit’s law. The same result can be obtained calculating

canonical partition function from this classical Hamiltonian. However, instead of

classical oscillators if quantum harmonic oscillators are considered which constitutes

Einstein solid, an exponential decay of specific heat at low temperature is observed.

2.3.2.4 Constant pressure Canonical ensemble

The NPT ensemble is also called the isothermal-isobaric ensemble. It describes

systems in contact with a thermostat at temperature T and a bariostat at pressure

P . The system not only exchanges heat with the thermostat, it also exchanges

volume (and work) with the bariostat. The total number of particles N remains

fixed. But the total energy E and volume V fluctuate at thermal equilibrium.

In the NPT canonical ensemble, the energy E as well as the volume V can vary

from zero to infinity. Each microstate s is now characterised by the energy Es of

that state and the volume of the system V . The probability ps that the system to

be in the microstate s is proportional to e−(Es+PV )/kBT . Since the system has to be

in a certain state, the sum of all ps has to be unity, i.e.;
∑

s ps = 1. The normalized

probability

ps =
exp{−(Es + PV )/kBT}

∫∞

0
dV
∑

s exp{−(Es + PV )/kBT}

=
1

Z(N,P, T )
e−(Es+PV )/kBT

(2.1)
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is the Gibbs probability and the normalization factor

Z (N,P, T ) =

∫ ∞

0

dV
∑

s

e
− (Es+PV )

kBT

=

∫ ∞

0

dV
∑

s

e−β(Es+PV )

(2.2)

where β = 1/(kBT ) and Z (N,P, T ) is the constant pressure canonical partition

function.

It can be noted here that the canonical partition function Z(N, V, T ) under constant

volume is related to the canonical partition function Z(N,P, T ) under constant

pressure by the following Laplace transform.

Z (N,P, T ) =

∫ ∞

0

dV
∑

s

e−β(Es+PV ) =

∫ ∞

0

e−βPV dV
∑

s

e−βEs

=

∫ ∞

0

Z (N, V, T ) e−βPV dV

(2.3)

The expectation (or average) value of a macroscopic quantity X is given by

〈X〉 =
∫∞

0
dV
∑

sXs exp{−β(Es + PV )}
∫∞

0
dV
∑

s exp{−(Es + PV )/kBT}

=
1

Z(N,P, T )

∫ ∞

0

dV
∑

s

Xse
−(Es+PV )/kBT

(2.4)

where Xs is the property X measured in the microstate s when system volume is V .

Under this macroscopic condition, both the enthalpy H = E + PV and the volume

V of the system fluctuate. The average enthalpy 〈H〉 of the system is given by

〈H〉 = 〈E〉+ P 〈V 〉

=
1

Z(N,P, T )

∫ ∞

0

dV
∑

s

(Es + PV ) e−(Es+PV )/kBT

= − ∂

∂β

{

ln

(

∫ ∞

0

dV
∑

s

e−β(Es+PV )

)}

= − ∂

∂β
lnZ(N,P, T )

(2.5)

Immediately, one could calculate a thermal response function, the specific heat at
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constant pressure CP as

CP =

(

∂H

∂T

)

P

(2.6)

where H ≡ 〈H〉.

In the continuum limit of the energy levels, the summations in the above expres-

sions should be replaced by integrals. In this limit, the constant pressure canonical

partition function can be written as

Z(N,P, T ) =
1

h3NN !

∫ ∞

0

dV

∫ ∫

exp {−β [H(p, q) + PV ]} d3Nqd3Np (2.7)

where H =
N
∑

i

Hi(qi, pi) and the volume element d3Nqd3Np =
N
∏

i

d3qid
3pi. N ! is for

indistinguishable particles only.

The expectation value of X is given by

〈X〉 = 1

Z(N,P, T )

∫ ∞

0

dV

∫ ∫

X(q, p) exp {−β [H(p, q) + PV ]} d3Nqd3Np (2.8)

The Gibbs free energy G(N,P, T ) = E − TS + PV is the appropriate potential

or free energy to describe a thermodynamic system of fixed number of particles in

thermal equilibrium with a heat-bath at temperature T as well as in mechanical

equilibrium at a constant pressure P . The statistical definition of entropy S under

this macroscopic condition The statistical definition of entropy under this conditions

can be obtained from the ensemble average of −kB ln ps, ps is the probability to find

the system in the state s. The entropy S in terms of ps then can be obtained as

S = 〈−kB ln ps〉

= −kB
1

Z

∫

dV
∑

s

e−β(Es+PV ) ln ps

= −kB
∫

dV
∑

s

{

1

Z
e−β(Es+PV )

}

ln ps

= −kB
∫

dV
∑

s

ps ln ps

(2.9)
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Following the definition of ps given in Eq. 2.1, one has

S = −kB
∫

dV
∑

s

e−β(Es+PV )

Z
{−β(Es + PV )− lnZ}

=
1

T

{

1

Z

∫

dV
∑

s

(Es + PV )e−β(Es+PV )

}

+ kB lnZ

=
1

T
(E + PV ) + kB lnZ

(2.10)

where E ≡ 〈E〉 and V ≡ 〈V 〉. Therefore, the Gibbs free energy G(N,P, T ) of the

system is given by

G(N,P, T ) = E − TS + PV = −kBT lnZ(N,P, T ). (2.11)

The thermodynamic equilibrium here corresponds to the minimum of Gibbs free en-

ergy. All equilibrium, thermodynamic properties can be calculated by taking appro-

priate derivatives of the Gibbs free energy G(N,P, T ) with respect to an appropriate

parameter of it. Since the differential form of the first law of thermodynamics given

by

dE = TdS − PdV + µdN (2.12)

where µ is the chemical potential, the differential form of the Gibbs free energy

G(N,P, T ) = E − TS + PV is given by

dG = dE − SdT − TdS + PdV + V dP

= −SdT + V dP + µdN
(2.13)

Then, the thermodynamic parameters of the system can be obtained as

S = −
(

∂G

∂T

)

P,N

, V = −
(

∂G

∂P

)

T,N

, µ =

(

∂G

∂N

)

T,P

(2.14)

Since we will be using these relations frequently, we present here different derivatives

of the Gibbs free energy G(N,P, T ) with respect to its parameters for a fluid system

at constant pressure in the following flowchart.
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Z(N,P, T ) = 1
h3NN !

∫

dV
∫

e−β(H+PV )d3Nqd3Np

G(N,P, T ) = −kBT lnZ(N,P, T )

G = E − TS + PV

dG = −SdT + V dP + µdN

Entropy

S = −
(

∂G
∂T

)

P,N

Volume

V =
(

∂G
∂P

)

T,N

Chemical Potential

µ =
(

∂G
∂N

)

T,P

The thermodynamic response functions now can be calculated by taking second

derivatives of the Gibbs free energy G(N,P, T ). The specific heat at constant pres-

sure can be obtained as

CP = T

(

∂S

∂T

)

P,N

= −T
(

∂2G

∂T 2

)

P,N

, (2.15)

the isothermal compressibility κT can be obtained as

κT = − 1

V

(

∂V

∂P

)

T,N

= − 1

V

(

∂2G

∂P 2

)

T,N

, (2.16)

and the volume expansion coefficient αP is given by

αP =
1

V

(

∂V

∂T

)

P,N

=
1

V

(

∂2G

∂T∂P

)

N

. (2.17)

Another response function, iso-entropic compressibility κS can be calculated from

the enthalpy H = E + PV . Since dH = TdS + V dP + µdN , volume V and the

iso-entropic compressibility κS are given by

V =

(

∂H

∂P

)

S,N

and κS = − 1

V

(

∂V

∂P

)

S,N

= − 1

V

(

∂2H

∂P 2

)

S,N

. (2.18)

58



2.3 Ensembles and Thermodynamic quantities

2.3.3 Canonical ensemble for magnetic system

Canonical ensemble for a magnetic system can be fixed in two different st of pa-

rameters as in fluid. Let us first take (N,M, T ), the number of magnetic moments

N , the total magnetization M and the temperature T as our system parameters.

Under such macroscopic condition, Helmholtz free energy F (N,M, T ) describes the

equilibrium condition of the system. It is similar to the constant volume canonical

ensemble for a fluid system. If a microstate s of the (N,M, T ) canonical ensemble

is characterised by an energy Es and the system is in thermal equilibrium with a

heat-bath at temperature T , then the probability ps that the system to be in the mi-

crostate s must be ∝ e−Es/kBT , the Boltzmann factor. The constant field canonical

partition function Z(N,M, T ) would be given by

Z (N,M, T ) =
∑

s

e
− Es

kBT =
∑

s

e−βEs (2.19)

where β = 1/(kBT ) and the Gibbs free energy is then given by

F (N,B, T ) = −kBT lnZ (N,M, T ) . (2.20)

Different derivatives of the Helmholtz free energy F (N,M, T ) with respect to its

parameters for a magnetic system at constant external field are given in the following

flowchart.

Z(N,M, T ) =
∑

s e
−βEs

F (N,M, T ) = −kBT lnZ(N,M, T )

F = E − TS

dF = −SdT + BdM

Entropy

S = −
(

∂F
∂T

)

M

Magnetization

B =
(

∂F
∂M

)

T
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However, the natural parameters for a magnetic system are the number of magnetic

moments N , the external magnetic induction B and the temperature T . Under

this macroscopic condition, the Gibbs free energy G(N,B, T ) of the system defines

the thermodynamics equilibrium. It is similar to the constant pressure canonical

ensemble for a fluid system. One needs to calculate the constant field canonical

partition function Z(N,B, T ) and which would be given by

Z (N,B, T ) =
∑

s

e
− Es

kBT =
∑

s

e−βEs (2.21)

where β = 1/(kBT ) and the Gibbs free energy is then given by

G(N,B, T ) = −kBT lnZ (N,B, T ) . (2.22)

Different derivatives of the Gibbs free energy G(N,B, T ) with respect to its pa-

rameters for a magnetic system at constant external field are given in the following

flowchart.

Z(N,B, T ) =
∑

s e
−βEs

G(N,B, T ) = −kBT lnZ(N,B, T )

G = E − TS + BM

dG = −SdT − MdB

Entropy

S = −
(

∂G
∂T

)

B

Magnetization

M = −
(

∂G
∂B

)

T

The magnetic response functions now can be calculated by taking second derivatives

of the Gibbs free energy G(N,B, T ). The specific heat at constant magnetization
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and constant external field B can be obtained as

CM = T

(

∂S

∂T

)

M,N

= −T
(

∂2F

∂T 2

)

M,N

, (2.23)

and

CB = T

(

∂S

∂T

)

B,N

= −T
(

∂2G

∂T 2

)

B,N

(2.24)

respectively. The isothermal susceptibility χT can be obtained as

χT =

(

∂M

∂B

)

T,N

= −
(

∂2G

∂B2

)

T,N

, (2.25)

and the coefficient αB is given by

αB =

(

∂M

∂T

)

B,N

=

(

∂2G

∂T∂B

)

N

. (2.26)

Another response function, iso-entropic susceptibility χS can be calculated from the

enthalpy H = E + BM . Since dH = TdS + MdB, magnetization M and the

iso-entropic susceptibility χS are given by

M = −
(

∂H

∂B

)

S

and χS =

(

∂M

∂B

)

S

= −
(

∂2H

∂B2

)

S

. (2.27)

Example: Paramagnet

Consider a system of N localized magnetic ions, of spin-1/2 and magnetic moment

µ. An external magnetic field B is applied to the system. The system is in contact

with a heat bath at temperature T . The Hamiltonian of the system is given by

H = −µB
N
∑

j=1

σj

where σj = ±1, for j = 1, 2 · · · , N . A microscopic state of this system is charac-

terized by the values of set of spin variables {σj}. The canonical partition function

then can be written as

Z(N,B, T ) =
∑

{σj}

exp(−βH) =
∑

σ1,σ2,··· ,σN

exp

(

βµB
N
∑

j=1

σj

)

.
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The sum can be factorized into multiples of partition function of individual particles

and may be written as

Z =

[

∑

σ1

exp (βµBσ1)

]

· · ·
[

∑

σN

exp (βµBσN)

]

= ZN
1

where Z1 is the single particle partition function and is given by

Z1 =
∑

σ=±1

exp (βµBσ) = 2 cosh(βµB).

The Gibbs free energy is then readily obtained as

G(N,B, T ) = −kBT lnZ(N,B, T ) = −NkBT ln

{

2 cosh

(

µB

kBT

)}

.

As soon as the free energy is known other thermodynamic quantities can also be

obtained. In the following, the expressions for entropy S, internal energy E, specific

heat CB, magnetization M and susceptibility χ are derived.

S = −
(

∂G

∂T

)

B

= NkB

[

ln

{

2 cosh

(

µB

kBT

)}

− µB

kBT
tanh

(

µB

kBT

)]

,

CB = T

(

∂S

∂T

)

B

= NkB

(

µB

kBT

)2

cosh−2

(

µB

kBT

)

,

M = −
(

∂G

∂B

)

T

= Nµ tanh

(

µB

kBT

)

,

χT =

(

∂M

∂B

)

T

=
Nµ2

kBT
cosh−2

(

µB

kBT

)

.

At high temperature kBT ≫ µH , and tanhx ≈ x then

M ≈ Nµ2B

kBT
χ ≈ Nµ2

kBT
=
C

T

where C = Nµ2/kB is a constant. This is the Curie’s law of paramagnetism.

2.3.3.1 Susceptibility as fluctuation in magnetization:

Consider a system on N localized non-interacting paramagnetic ions of spin-1
2
and

magnetic moment µ in an external magnetic field B, is in thermal equilibrium with

a heat bath at temperature T . The square deviation in magnetization M is defined
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as
〈

∆M 2
〉

=
〈

M2
〉

− 〈M〉2.

The average and square magnetic moments are given by

〈µ〉 = 1

Z1

(

∑

s=±1

µse
−βEs

)

= µtanh
µB

kBT
and

〈

µ2
〉

=
1

Z1

(

∑

s=±1

µ2
se

−βEs

)

= µ2

Therefore,
〈

∆M 2
〉

=
〈

M2
〉

− 〈M〉2 = N
(〈

µ2
〉

− 〈µ〉2
)

Plugging the values of 〈µ〉 and 〈µ2〉 one has

〈

∆M 2
〉

= Nµ2

[

1−
(

tanh
µB

kBT

)2
]

= Nµ2

(

cosh
µB

kBT

)−2

= kBTχT

2.3.4 The grand canonical ensemble:

Consider a system which could exchange energy as well as particles (mass) with the

surroundings. Canonical ensemble theory has limitations in dealing these systems

and needs generalization. It comes from the realization that not only the energy

E but also the number of particles N is difficult to measure directly of a physical

system. However, their average values 〈E〉 and 〈N〉 are measurable quantities.

Consider a given system A which is exchanging energy as well as matter, i.e., number

of particles with a large particle-energy reservoir B as shown in Fig. 2.3. The system

A is regarded as a member of a grand canonical ensemble. Say, the system A is any

one of its states characterized by Nr particles and Es energy. In the reservoir, the

BA

rrs s(E  ,N  ) (E  ,N  )/ /

Figure 2.3: A system A is in equilibrium with a particle-energy reservoir B .

number of particles and the energy would be N ′
r and E ′

s such that

Nr +N ′
r = N0 = constant, where

Nr

N0
≪ 1.
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and

Er + E ′
r = E0 = constant, where

Er

E0
≪ 1.

The probability Prs to find the system in a state (Nr, Es) would be directly propor-

tional to the number of microstates Ω′(N ′
r, E

′
s). Thus,

Prs ∝ Ω′(N ′
r, E

′
s) = Ω′(N0 −Nr, E0 −Es).

Since Nr and Es are small quantities with respect to N0 and E0, a Taylor series

expansion of Ω′ is possible around (N0, E0) and can be written as

lnΩ′(N0 −Nr, E0 − Es) = lnΩ′(N0, E0) +
(

∂ ln Ω′

∂N ′

)

N ′=N0

(−Nr)

+
(

∂ ln Ω′

∂E ′

)

E′=E0

(−Es) + · · ·
≈ constant− α′Nr − β ′Es.

where α = ∂ ln Ω/∂N and β = ∂ ln Ω/∂E. In equilibrium α′ = α and β ′ = β. Thus

the probability Prs is given by

Prs = C exp(−αNr − βEs).

After normalizing,

Prs =
exp(−αNr − βEs)

∑

rs

exp(−αNr − βEs)
, since

∑

rs

Prs = 1

where the sum is over all possible states of the system A. The numerator exp(−αNr−
βEs) is the Boltzmann factor here and the denominator Z =

∑

rs exp(−αNr−βEr)

is called the grand canonical partition function.

The mean energy 〈E〉 and the mean number of particle 〈N〉 of the system are then

given by

〈E〉 = E =

∑

rsEs exp(−αNr − βEs)
∑

rs exp(−αNr − βEs)
= − ∂

∂β
ln{
∑

rs

e−αNr−βEs} = −∂ lnZ
∂β

= − 1

Z
∂Z
∂β

and

〈N〉 = N =

∑

rsNr exp(−αNr − βEs)
∑

rs exp(−αNr − βEs)
= − ∂

∂α
ln{
∑

rs

e−αNr−βEs} = −∂ lnZ
∂α

= − 1

Z
∂Z
∂α

.
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2.3.4.1 Thermodynamics in Grand Canonical Ensemble:

From second law of thermodynamics one has

TdS = dE + PdV − µdN

where µ is the chemical potential. Consequently the thermodynamic parameters are

defined as

1

T
=

(

∂S

∂E

)

N,V

,
p

T
=

(

∂S

∂V

)

N,E

and
µ

T
= −

(

∂S

∂N

)

E,V

.

On the other hand, the entropy here is given by

S = kB ln Ω(E,N).

Thus,

dS = kB

(

∂ ln Ω

∂E

)

dE + kB

(

∂ ln Ω

∂N

)

dN

It is then straight forward to obtain α and β as given below

(

∂S

∂E

)

N

= kB

(

∂ ln Ω

∂E

)

= kBβ =
1

T
=⇒ β =

1

kBT

and
(

∂S

∂N

)

E

= kB

(

∂ ln Ω

∂N

)

= kBα = −µ

T
=⇒ α = − µ

kBT
.

The grand canonical partition function then can be written as

Z =
∑

rs

exp

(

µNr

kBT
− Es

kBT

)

=
∑

rs

z
Nre−Es/kBT

where z = eµ/kBT is the fugacity of the system. In case of a system of continuous

energy levels, the grand partition function can be written as

Z =

∞
∑

N=1

1

h3NN !

∫ ∫

exp

{

−βH(p, q) +
µN

kBT

}

d3Nqd3Np.

Note that division by N ! is only for indistinguishable particles.

As soon as the partition function is known, one could calculate the thermodynamic
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quantities in terms of the partition function. The grand partition function Z is a

function of β, α and the volume V , and can be written as

Z = Z(β, α, V ).

Therefore,

d lnZ = ∂ lnZ
∂β

dβ + ∂ lnZ
∂α

dα + ∂ lnZ
∂V

dV

= −Edβ −Ndα + βPdV.

or

d (lnZ + βE + αN) = βdE + αdN + βPdV = β(dE − µN + PdV ) =
1

kB
dS.

or

S = kB(lnZ + βE − µβN) =⇒ TS = kBT lnZ + E − µN.

The grand potential Φ(T, V, µ) then can be obtained as

Φ(T, V, µ) = E − TS − µN = −kBT lnZ.

Since grand potential characterizes a thermodynamic system exchanging particle

and energy with surroundings, the thermodynamic quantities of such a system then

can be obtained by statistical mechanics by calculating grand canonical partition

function.

In summary, the classical statistical mechanical problems then can be studied us-

ing three ensembles: microcanonical, canonical and grand canonical depending on

the basis of interaction of the system with its surroundings. Microcanonical en-

semble corresponds to an isolated system, canonical ensemble corresponds a system

in equilibrium with a heat bath and grand canonical ensemble corresponds to a

system in equilibrium with a particle-energy bath. The corresponding statistical

quantities and thermodynamic functions of different ensembles are listed in the ta-

ble below. Using thermodynamic potentials, obtained from statistical mechanics,

thermodynamic quantities can be calculated in statistical mechanical way. Thus, it

is possible to derive microscopically all observational quantities of thermodynamics

by the application of statistical mechanics.
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Ensemble Statistical quantity Thermodynamic functions
Microcanonical Number of microstates: Ω Entropy:

S = kB lnΩ
Canonical Canonical partition function: Z Helmholtz free energy:

F = −kBT lnZ
Grand Canonical Grand partition function: Z Grand potential:

Φ = −kBT lnZ

Table 2.1: The statistical quantities and their corresponding thermodynamic functions

of different ensembles.

2.4 Quantum Statistical Mechanics

In this section, statistical mechanics of N identical quantum particles will be for-

mulated. For simplicity, a gas of non-interacting N particles is considered. Since

the particles are non-interacting, the Hamiltonian of the system is just the sum of

N individual Hamiltonian and it is given by

Ĥ(q,p) =
N
∑

i=1

Ĥi(qi, pi)

where (qi, pi) are the coordinate and momentum of the ith particle, Ĥi is the Hamil-

tonian operator.

A stationary system of N particles in a volume V then can be in any one of the

quantum states determined by the solutions of the time independent Schrödinger

equation

ĤψE(q) = EψE(q)

where E is the eigenvalue of the Hamiltonian and ψE is the corresponding eigenfunc-

tion. The solution of the above Schrödinger equation of N non-interacting particles

can be written as

ψE(q) =
N
∏

i=1

φǫi(qi), with E =
N
∑

i=1

ǫi

and

Ĥiφǫi(qi) = ǫiφǫi(qi)

where φi is the eigenfunction of the single particle Hamiltonian Ĥi with eigenvalue
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ǫi. Each single particle wave function φi is always a linear combination of a set

of orthonormal basis functions {ϕj}, φi =
∑

j cijϕj. If there are ni particles in an

eigenstate ǫi, then the distribution should satisfy

∑

i

ni = N and
∑

i

niǫi = E.

2.4.1 Symmetry of wave functions and particle statistics:

For simplicity, first consider a two-particle system described by ψ(a, b). If the particle

a described by φa
n when it is in the nth state of energy En and the particle b described

by φb
k when it is in the kth state of energy Ek, then the wave function for the

combined two particle system is given by

ψ(a, b) = φa
nφ

b
k with E = En + Ek

where E is the energy of the system. If the two particles are exchanged so that a in

the kth state and b in the nth state, the corresponding wave function is

ψ(a, b) = φb
nφ

a
k with E = En + Ek.

Since both the states corresponds to the same energy value, the states are then

degenerate. The most general wave function is the linear combinations of these two

wave functions. There are two possible combinations and they are given by

(i) ψ(a, b) =
1√
2!

[

φa
nφ

b
k + φb

nφ
a
k

]

Symmetric

and

(ii) ψ(a, b) =
1√
2!

[

φa
nφ

b
k − φb

nφ
a
k

]

=
1√
2!

φa
n φb

n

φa
k φb

k

Anti-symmetric

If a and b are interchanged, (i) remains unchanged and it is called symmetric wave

function, (ii) the absolute vale remains unchanged but reverses the sign and it is

called anti-symmetric wave function. However, the wave functions φa
nφ

b
k and φb

nφ
a
k

individually are neither symmetric nor anti-symmetric. The interchange of the par-

ticles leads to different microstates which means the particles are distinguishable as

classical particles.
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Now, one could write the wave functions for N particles {a1, a2, · · · , aN} with ai

particle in the nith state. The corresponding wave functions are

ψ(a1, a2, · · · , aN) =
N
∏

i=1

φai
ni

Product

ψ(a1, a2, · · · , aN) =
1√
N !

∑

N
∏

i=1

φai
ni

Symmetric

ψ(a1, a2, · · · , aN) =
1√
N !

φa1
n1

φa2
n1

· · · φaN
n1

φa1
n2

φa2
n2

· · · φaN
n2

...
...

. . .
...

φa1
nN

φa2
nN

· · · φaN
nN

Anti-symmetric

The particles described by these three wave functions obey different statistics. (i)

The particles described by the product function correspond to different microstate by

interchanging particles between states. These are then distinguishable particles and

obey Maxwell-Boltzmann statistics. (ii) In the case of symmetric wave functions,

interchanging of particles does not generate a new microstate. Thus, the particles

are indistinguishable. Also, all the particles in a single state corresponds to a non-

vanishing wave function. That means accumulation of all the particles in a single

state is possible. These particles obey Bose-Einstein statistics and are called bosons.

(iii) For the anti-symmetric wave function, if the two particles are exchanged, the

two columns of the determinant are exchanged and leads to the same wave function

with a different sign. Thus, the particles are again indistinguishable. However, if any

two particles are in one state then the corresponding rows of the determinant are the

same and the wave function vanishes. This means that a state cannot be occupied

by more than one particle. This is known as Pauli principle. These particles obey

Fermi-Dirac statistics and they are called fermions.

2.4.2 The quantum distribution functions:

Consider an ideal gas of N identical particles. Let s represents the single particle

state and S denotes the state of the whole system. At the state S, the total energy

ES and the number of particles N are given by

ES =
∑

s

nsǫs and N =
∑

s

ns.
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The distribution functions can be calculated by obtaining the appropriate partition

function.

(i) MB Statistics: In this case the particles are distinguishable. The canonical

partition function is given by

Z =
∑

S

e−βES =
∑

S

e−β
∑

s nsǫs

where the sum is all states S. All states is the collection of states with all possible

values of ns. This, the partition function can be written as

Z =
∑

{si}

e−β(ǫs1+ǫs2+···+ǫsN )

where the sum is now over the all possible states of individual particles. The sum-

mation in the partition function can be carried out in the following manner.

Z =
∑

s1,s2··· ,sN

e−βǫs1e−βǫs2 · · · e−βǫsN

=

[

∑

s1

e−βǫs1
][

∑

s2

e−βǫs2
]

· · ·
[

∑

sN

e−βǫsN
]

=

[

∑

si

e−βǫsi
]N

and

lnZ = N ln

(

∑

si

e−βǫsi
)

.

The mean number of particles in state s is then given by

〈ns〉MB = − 1

β

∂ lnZ

∂ǫs
=

Ne−βǫs
∑

s

e−βǫs
.

This is the Maxwell-Boltzmann distribution as already obtained classical statistical

mechanics.

(ii) BE Statistics: The grand canonical partition function Z ofN indistinguishable

bosons is given by

Z =
∑

s

e−β(n1ǫ1 + n2ǫ2 + · · · ) + µβ(n1 + n2 + · · · )

70



2.4 Quantum Statistical Mechanics

where the sum is over all possible single particle states s. The number of particles

ni in each state i could be 0, 1, 2, · · · subject to the condition
∑

ni = N . Therefore,

Z =

(

∑

n1

e−β(ǫ1 − µ)n1

)(

∑

n2

e−β(ǫ2 − µ)n2

)

· · ·

Since,
∞
∑

n=0

e−β(ǫ1 − µ)n =
1

1− e−β(ǫ− µ)
,

the partition function then can be written as

Z =

(

1

1− e−β(ǫ1 − µ)

)(

1

1− e−β(ǫ2 − µ)

)

· · ·

and

lnZ = −
∑

s

ln
(

1− e−β(ǫs − µ)
)

.

The number of particles in an grand canonical ensemble is given by

N =
1

β

∂ lnZ
∂µ

= − 1

β

∂

∂µ

{

∑

s

ln
(

1− e−β(ǫs − µ)
)

}

=
∑

s

〈ns〉

Thus the average number of molecules in the s level is

〈ns〉BE = − 1

β

∂

∂µ

{

ln
(

1− e−β(ǫs − µ)
)}

=
e−β(ǫs − µ)

1− e−β(ǫs − µ)
=

1

eβ(ǫs − µ) − 1
.

This is Bose-Einstein distribution where always µ < ǫs, otherwise 〈ns〉 could be

negative.

(iii) FD Statistics: The fermions have only two states, ns = 0 or 1. Thus, the

grand canonical partition function for N indistinguishable fermions is given by

Z =
(

1 + eβ(µ− ǫ1)
)(

1 + eβ(µ− ǫ2)
)

· · ·

and

lnZ =
∑

s

ln
(

1 + eβ(µ− ǫs)
)
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The number of particles is given by

N =
1

β

∂ lnZ
∂µ

=
∑

s

eβ(µ− ǫs)

1 + eβ(µ− ǫs)
=
∑

s

〈ns〉

Thus the average number of molecules in the s level is

〈ns〉FD =
1

eβ(ǫs − µ) + 1
.

This is the Fermi-Dirac Distribution.

2.4.3 Boltzmann limit of Boson and Fermion gasses:

The Bose-Einstein (BE) and Fermi-Dirac (FD) distributions are given by

〈ns〉 =
1

eβ(ǫs − µ) ± 1

where + corresponds to FD and − corresponds to BE distribution. Suppose that,

e−βµ ≫ 1 that is eβ(ǫs − µ) ≫ 1

In this case,

〈ns〉 ≈
1

eβ(ǫs − µ)
= eβµe−βǫs

and
∑

〈ns〉 = N = eβµ
∑

s

e−βǫs or eβµ =
N

∑

s

e−βǫs

Thus the distribution becomes

〈ns〉 =
Ne−βǫs
∑

s

e−βǫs

as that of classical Maxwell-Boltzmann distribution. Thus the quantum statistics

will behave like a classical statistics in the limit of

e−βµ ≫ 1.

72



2.5 Equation of state of a quantum Ideal Gas

where µ is chemical potential of an ideal gas of N molecules in a volume V at

temperature T . Since the partition function of an ideal gas of N molecules in a

volume V at temperature T is given by

Z(N, V, T ) =
1

N !

[

V

h3
(2mπkBT )

3/2

]N

and correspondingly the free energy will be

F = −kBT lnZ = −NkBT ln
V

N

(

2mπkBT

h2

)3/2

−NkBT.

The chemical potential of the ideal gas is then given by

µ =

(

∂F

∂N

)

V,T

= −kBT ln

[

(

2πmkBT

h2

)3/2
V

N

]

Thus one has,
(

2πmkBT

h2

)3/2
V

N
≫ 1 =⇒ 1

λ3
V

N
≫ 1

where λ = h/
√
2πmkBT is the thermal wavelength. The above condition will be

then satisfied only for the values of the physical parameters T → ∞ and ρ → 0.

This is known as the classical limit of the quantum gas.

2.5 Equation of state of a quantum Ideal Gas

Consider a gas ofN non-interacting identical quantum particles enclosed in a volume

V . The distribution function for the particles of the gas is given by

〈n〉 = 1

eβ(ǫ− µ) ± 1

where + sign corresponds to FD and − sign corresponds to BE distribution. In

order to obtain the equation of state, one needs to establish a relationship between

the pressure P , volume V and energy E. The mean energy E of the system is given

by

E =

∫ ∞

0

ǫg(ǫ)〈n〉dǫ
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where g(ǫ) is the density of states between energy ǫ and ǫ+dǫ. The number of states

g(p) between momentum p and p+ dp is

g(p)dp =
1

h3
d3qd3p =

V

h3
d3p =

V

h3
4πp2dp.

Since p2 = 2mǫ, the number of states g(ǫ) between energy ǫ and ǫ+ dǫ is then

g(ǫ)dǫ =
2πV

h3
(2m)3/2ǫ1/2dǫ.

The energy E of the system is then given by

E =
2πV

h3
(2m)3/2

∫ ∞

0

ǫ3/2

eβ(ǫ− µ) ± 1
dǫ.

In order to calculate the pressure P of the gas as

P =
1

β

∂ lnZ
∂V

,

one needs to know the grand canonical partition function of the gas. The grand

canonical partition function of the gas is given by

lnZ =

∫ ∞

0

ln
(

1± e−β(ǫ− µ)
)±1

g(ǫ)dǫ

where + sign corresponds to FD and − sign corresponds to BE distribution as

before. The pressure P of the gas is then

P =
1

β

∂

∂V

∫ ∞

0

ln
(

1± e−β(ǫ− µ)
)±1 2πV

h3
(2m)3/2ǫ1/2dǫ

=
1

β

2π

h3
(2m)3/2

∫ ∞

0

ln
(

1± e−β(ǫ− µ)
)±1

ǫ1/2dǫ.

Integrating by parts, one could get the pressure as

P =
2

3V

(

2πV

h3
(2m)3/2

∫ ∞

0

ǫ3/2

eβ(ǫ− µ) ± 1
dǫ

)

=
2

3

E

V
.

Thus, the equation of state is given by

PV =
2

3
E
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2.5 Equation of state of a quantum Ideal Gas

as that of classical monatomic ideal gas. The equation of state is then independent

of the statistics the particles obey.

Application of quantum statistical mechanics is enormous in physics and beyond the

scope of this article. A major application can be found in solid state physics books.

Phonons and electrons are two common example of boson and fermion. It is then

left to reader’s interest.
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Problems:

2.1 A system consists of N noninteracting, distinguishable two-level atoms. Each

atom can exist in one of two states, E0 = 0, and E1 = ε. The number of atoms

in energy level E1 is n1 . The internal energy of the system is E = n0E0+n1E1.

(a) Compute the entropy S of the system as a function of internal energy. (b)

Compute the heat capacity C of a fixed number of atoms, N .

2.2 A lattice contains N normal lattice sites and N interstitial lattice sites. N

identical atoms sit on the lattice, M on the interstitial sites and N−M on the

normal sites (N ≫ M ≫ 1). If an atom occupies a normal sites, its energy

E = 0. If an atom occupies an interstitial site, its energy is E = ε. Compute

the internal energy E and heat capacity C as a function of temperature T for

this lattice.

2.3 Consider N localized one dimensional classical Harmonic oscillators of fre-

quency ω in an isolated system with fixed energy E. Show that the number

of microstates of the system is given by

Ω =
1

N !

(

E

~ω

)N

Calculate the the temperature T of the system and check that E = NkBT .

2.4 Consider N localized one dimensional quantum Harmonic oscillators of fre-

quency ω in an isolated system with fixed energy E. Show that the entropy S

of the system is given by

S

NkB
=

(

E

N~ω
+

1

2

)

ln

(

E

~ω
+
N

2

)

−
(

E

N~ω
− 1

2

)

ln

(

E

~ω
− N

2

)

Calculate the the temperature T of the system and check that

E =
N~ω

2
+

N~ω

e
~ω

kBT − 1
.

2.5 Consider a system of N localized spin-1/2 magnetic ions of magnetic moment

µ in an external magnetic field H having total energy E. Calculate the entropy

of the system S(E,N,H) = kB ln Ω where Ω = N !/(N1!N2!) is total number
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2.5 Equation of state of a quantum Ideal Gas

of accessible states with N1 up spins and N2 down spins configurations. Check

that the entropy of the system is given by

S

NkB
= −NµH − E

2NµH
ln

(

NµH − E

2NµH

)

− NµH + E

2NµH
ln

(

NµH + E

2NµH

)

.

Treating E to be continuous, plot S/NkB versus E/NµH . Show that this

system can have negative absolute temperature for the positive energy region.

Why negative absolute temperature is possible here but not for a gas in a box?

2.6 Consider a monatomic ideal gas of N particles enclosed in a volume V . The

system is in thermodynamic equilibrium with a heat bath at temperature

T . Calculate the canonical partition function Z, obtain internal energy E,

Helmholtz free energy F and entropy S. Verify the equation of state PV =

NkBT .

2.7 Consider N localized one dimensional classical Harmonic oscillators of fre-

quency ω in thermal equilibrium at temperature T . Obtain the canonical

partition function Z = (~ω/kBT )
−N . Calculate the internal energy E of the

system. Check that the energy obtained is satisfying the equipartition theo-

rem, kBT/2 thermal energy per square term in the Hamiltonian.

2.8 Consider N localized one dimensional quantum Harmonic oscillators of fre-

quency ω in thermal equilibrium at temperature T . Obtain the canonical

partition function Z = [2 sinh (~ω/2kBT )]
−N . Show that the internal energy

E of the system is given by

E = N

[

1

2
~ω +

~ω

e
~ω

kBT − 1

]

(Note that E is not satisfying equipartition theorem.) Check that E ≈ NkBT

as T → ∞ and E ≈ N~ω/2 as T → 0 as expected.

2.9 Consider a monatomic ideal gas of N particles enclosed in a volume V . The

system is in thermodynamic equilibrium with a heat bath at temperature T

and at constant chemical potential µ. Calculate the grand canonical partition
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function Q, obtain the grand potential Φ = −kBT lnQ . Verify the equation

of state PV = NkBT .

2.10 Consider N localized one dimensional quantum Harmonic oscillators of fre-

quency ω in thermodynamic equilibrium at temperature T and chemical po-

tential µ. Obtain the grand canonical partition function

Q =

[

1− eµ/kBT

2sinh (~ω/2kBT )

]−1

.

2.11 Consider a single component system of volume V , having two phases - solid and

vapour, in equilibrium at temperature T . Treating the vapour as a monatomic

ideal gas and the solid as quantum harmonic oscillator, show that a solid phase

exists below a characteristic temperature Tc given by f(Tc)/φ(Tc) = N/V

where N is the total number of particles in the system,

f (T ) =
[

2πmkBT/h
2
]3/2

and φ(T ) = [2sinh (~ω/2kBT ) ]
−1.
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