Mathematical Methods of Physics-I Internal Examination-2022 * Indicates required question Email * 1. #### PHYSICS DEPARTMENT Department of Physics, B. C. College, Asansol | 2. | NAME * | |----|-----------------------| | 3. | Registration Number * | | 4. | MOBILE NUMBER * | **Choose the Correct Option** | | 1. The sequence $\{(-1)^n\}=-1, 1, -1, \dots$ is | |----|---| | | (a) convergent | | | (b) divergent | | | (c) oscillatory | | | (d) none of these | | | Mark only one oval. | | | a | | | b | | | С | | | \bigcirc d | | 6. | 2. If a finite number of terms be included or removed from an infinite series, the convergence or divergence is (a) affected (b) unaffected (c) both (a) and (b) (d) none of the above Mark only one oval. a b c d | | 7. | (a) \$\vec{A}\$ (b) \$\vec{A}\$ (c) \$\vec{A}\$ (d) \$\vec{A}\$ | ne volume of the parrallelopiped with \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} as the coterminous edges is given by \mathbf{x} $(\overrightarrow{B} \times \overrightarrow{C})$ $+$ $(\overrightarrow{C} | |----|--|---| | | а | | | | \bigcirc b | | | | c | | | | \bigcirc d | | | | | | | 8. | | | | | 4. | If $\vec{\nabla} \times \vec{A} = 0$, then \vec{A} is | | | | (a) irrotational | | | | (b) solenoidal | | | | (c) axial | | | | (d) rotational | | | Mark onl | y one oval. | | | а | | $\begin{array}{c} \bigcirc \, b \\ \bigcirc \, c \\ \bigcirc \, d \end{array}$ | | 5. | If $\vec{\nabla} \times \vec{A} = 0$, then $\vec{\nabla} \cdot (\vec{A} \times \vec{r})$ is equal to | | | | | |-----|---------------------------|---|--|--|--|--| | | | (a) 0 | | | | | | | | (b) 3 | | | | | | | | (c) 2 | | | | | | | | (d) 1 | | | | | | | Mark on | aly one oval. | | | | | | | a | | | | | | | | () b | | | | | | | | \bigcirc c \bigcirc d | 10. | | | | | | | | | 6. | If \vec{A} and \vec{B} are irrotational, then $\vec{A} \times \vec{B}$ is | | | | | | | | (a) rotational | | | | | | | | (b) irrotational | | | | | | | | (c) solenoidal | | | | | | | | (d) none of the above | | | | | | | Mark only one oval. | d | | | | | | | | | | | | | 11. 7. $y = cx - c^2$, is the general solution of the differential equation (i) $$(y')^2 - xy' + y = 0$$ $$(ii) y^{\prime\prime} = 0,$$ (iii) $$v' = c$$ (ii) $$y'' = 0$$, (iii) $y' = c$, (iv) $(y')^2 + xy' + y = 0$ Mark only one oval. - (i) - ____ (ii) -) (iii) -) (iv) - 12. 8. Given $$3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 & x+y \\ z+w & 3 \end{bmatrix}$$ Find x, y, z and w. Mark only one oval. - x=1, y=2, z=3, w=4 - x=2, y=4, z=1, w=3 - x=1, y=3, z=5, w=1 -) x=2, y=2, z=2, w=2 13. 9. Inverse of $$\begin{bmatrix} 4 & 3 \\ -7 & 1 \end{bmatrix}$$ is $$(i) \begin{bmatrix} \frac{1}{4} & \frac{1}{3} \\ \frac{-1}{7} & 1 \end{bmatrix} \qquad (ii) \frac{1}{25} \begin{bmatrix} 4 & 3 \\ -7 & 1 \end{bmatrix} \qquad (iii) \frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (iv) \frac{1}{25} \begin{bmatrix} 1 & -3 \\ 7 & 4 \end{bmatrix}$$ Mark only one oval. - (i) - (ii) - (iii) - (iv) 14. 10. In the matrix equation $$\begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$ the values of x and y are (i) $x = 3, y = -1$ (ii) $x = 2, y = 5$ (iii) $x = 1, y = -1$ (iv) $x = -1, y = 1$ Mark only one oval. - (i) - (ii) - (iii) - (iv) This content is neither created nor endorsed by Google. Google Forms ## Mathematical Methods of Physics-I 7 responses | Pu | bl | is | h | ar | าal | lyti | cs | |----|----|----|---|----|-----|------|----| | | | | | | | | | | Publish analytics | | | | | | | |-----------------------|--|--|--|--|--|--| | NAME | | | | | | | | responses | | | | | | | | Nishant Sharma | | | | | | | | Archak Maji | | | | | | | | Debjyoti bhattacharya | | | | | | | | Abhrapratim samanta | | | | | | | | Umm e Humaira | | | | | | | | Sintu Rana | | | | | | | | Sujoy maji | | | | | | | | Registration Number | | | | | | | | responses | | | | | | | | 103221220055 | | | | | | | | 103221220080 | | | | | | | | 103221220063 | | | | | | | | 103221220089 | | | | | | | | 103221220064 | | | | | | | | 103221220098 | | | | | | | | 103221220108 | | | | | | | ### Choose the Correct Option This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy ## Google Forms